满分5 > 高中数学试题 >

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修)...

围建一个面积为360m2的矩形场地,要求矩形场地的一面利用旧墙(利用旧墙需维修),其它三面围墙要新建,在旧墙的对面的新墙上要留一个宽度为2m的进出口,如图所示,已知旧墙的维修费用为45元/m,新墙的造价为180元/m,设利用的旧墙的长度为x(单位:米).
(1)将修建围墙的总费用y表示成x的函数;
(2)当x为何值时,修建此矩形场地围墙的总费用最小?并求出最小总费用.

manfen5.com 满分网
(1)设矩形的另一边长为am,则根据围建的矩形场地的面积为360m2,易得,此时再根据旧墙的维修费用为45元/m,新墙的造价为180元/m,我们即可得到修建围墙的总费用y表示成x的函数的解析式; (2)根据(1)中所得函数的解析式,利用基本不等式,我们易求出修建此矩形场地围墙的总费用最小值,及相应的x值. 【解析】 (Ⅰ)设矩形的另一边长为am, 则y=45x+180(x-2)+180•2a=225x+360a-360. 由已知ax=360,得, 所以. (II)因为x>0,所以, 所以,当且仅当时,等号成立. 即当x=24m时,修建围墙的总费用最小,最小总费用是10440元.
复制答案
考点分析:
相关试题推荐
若集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=manfen5.com 满分网x2-x+manfen5.com 满分网,0≤x≤3}
(1)若A∩B=∅,求实数a的取值范围;
(2)当a取使不等式x2+1≥ax恒成立的最小值时,求(CRA)∩B.
查看答案
设a、b、c均为实数,求证:manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网+manfen5.com 满分网
查看答案
设命题P:关于x的不等式manfen5.com 满分网(a>0且a≠1)的解集为{x|-a<x<2a};命题Q:y=lg(ax2-x+a)的定义域为R.如果P或Q为真,P且Q为假,求a的取值范围.
查看答案
已知x+2y=1,x∈R+,y∈R+,则x2y的最大值为    查看答案
已知点A(m,n)在直线x+2y-2=0上,则2m+4n的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.