满分5 > 高中数学试题 >

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R. (1)当a...

已知函数f(x)=(ax2+x)ex,其中e是自然数的底数,a∈R.
(1)当a<0时,解不等式f(x)>0;
(2)若f(x)在[-1,1]上是单调增函数,求a的取值范围;
(3)当a=0时,求整数k的所有值,使方程f(x)=x+2在[k,k+1]上有解.
(1)根据ex>0,a<0,不等式可化为,由此可求不等式f(x)>0的解集; (2)求导函数,再分类讨论:①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立;②当a≠0时,令g(x)=ax2+(2a+1)x+1,因为△=(2a+1)2-4a=4a2+1>0,f(x)有极大值又有极小值.若a>0,可得f(x)在[-1,1]上不单调;若a<0,要使f(x)在[-1,1]上单调,因为g(0)=1>0,必须满足,从而可确定a的取值范围; (3)当a=0时,原方程等价于,构建函数,求导函数,可确定h(x)在(-∞,0)和(0,+∞)内是单调增函数,从而可确定方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上,故可得k的值. 【解析】 (1)因为ex>0,所以不等式f(x)>0,即为ax2+x>0, 又因为a<0,所以不等式可化为, 所以不等式f(x)>0的解集为.(4分) (2)f′(x)=(2ax+1)ex+(ax2+x)ex=[ax2+(2a+1)x+1]ex, ①当a=0时,f′(x)=(x+1)ex,f′(x)≥0在[-1,1]上恒成立, 当且仅当x=-1时取等号,故a=0符合要求;(6分) ②当a≠0时,令g(x)=ax2+(2a+1)x+1, 因为△=(2a+1)2-4a=4a2+1>0,所以g(x)=0有两个不相等的实数根x1,x2,不妨设x1>x2, 因此f(x)有极大值又有极小值. 若a>0,因为g(-1)•g(0)=-a<0,所以f(x)在(-1,1)内有极值点,故f(x)在[-1,1]上不单调.(8分) 若a<0,可知x1>0>x2,因为g(x)的图象开口向下,要使f(x)在[-1,1]上单调, 因为g(0)=1>0,必须满足,即,所以. 综上可知,a的取值范围是.(10分) (3)当a=0时,方程即为xex=x+2,由于ex>0,所以x=0不是方程的解,所以原方程等价于, 令, 因为对于x∈(-∞,0)∪(0,+∞)恒成立, 所以h(x)在(-∞,0)和(0,+∞)内是单调增函数,(13分) 又h(1)=e-3<0,h(2)=e2-2>0,,h(-2)=e-2>0, 所以方程f(x)=x+2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上, 所以整数k的所有值为{-3,1}.(16分)
复制答案
考点分析:
相关试题推荐
如图:已知椭圆A,B,C是长轴长为4的椭圆上三点,点A是长轴的一个端点,BC过椭圆的中心O,且manfen5.com 满分网
(Ⅰ)求椭圆的标准方程;
(Ⅱ)如果椭圆上两点P,Q使得直线CP,CQ与x轴围成底边在x轴上的等腰三角形,是否总存在实数λ使manfen5.com 满分网?请给出证明.

manfen5.com 满分网 查看答案
如图a所示,在直角梯形ABCD中,AB⊥AD,AD∥BC,F为AD的中点,E在BC上,且EF∥AB.已知AB=AD=CE=2,沿线段EF把四边形CDEF折起如图b所示,使平面CDEF⊥平面ABEF.
(1)求证:AF⊥平面CDEF;
(2)求三棱锥C-ADE的体积;
(3)求二面角B-AC-D的余弦值.

manfen5.com 满分网 查看答案
某科考试中,从甲、乙两个班级各抽取10名同学的成绩进行统计分析,两班成绩的茎叶图如图所示,成绩不小于90分为及格.
(Ⅰ)甲班10名同学成绩的标准差______乙班10名同学成绩的标准差(填“>”,“<”); 
(Ⅱ)从两班10名同学中各抽取一人,已知有人及格,求乙班同学不及格的概率;   
(Ⅲ)从甲班10人中取一人,乙班10人中取两人,三人中及格人数记为X,求X的分布列和期望.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网
(1)若f(x)=1,求cos(manfen5.com 满分网-x)的值;
(2)在△ABC中,角A,B,C的对边分别是a,b,c,且满足acosC+manfen5.com 满分网c=b,求f(B)的取值范围.
查看答案
已知O,A,B是同一平面内不共线的三点,且manfen5.com 满分网,则下列命题正确的是    .(写出所有正确命题的编号)
①若manfen5.com 满分网,则点M是线段AB的中点;
②若λ=-1,μ=2,则M,A,B三点共线;
③若manfen5.com 满分网,则点M在∠AOB的平分线上;
④若manfen5.com 满分网,则点M是△OAB的重心;
⑤若点M在△OAB外,则λ<0或μ<0或manfen5.com 满分网查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.