满分5 > 高中数学试题 >

如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段...

manfen5.com 满分网如图,某市拟在长为8km的道路OP的一侧修建一条运动赛道,赛道的前一部分为曲线段OSM,该曲线段为函数y=Asinωx(A>0,ω>0)x∈[0,4]的图象,且图象的最高点为manfen5.com 满分网;赛道的后一部分为折线段MNP,为保证参赛运动员的安全,限定∠MNP=120°
(1)求A,ω的值和M,P两点间的距离;
(2)应如何设计,才能使折线段赛道MNP最长?
(1)由图得到A及周期,利用三角函数的周期公式求出ω,将M的横坐标代入求出M的坐标,利用两点距离公式求出|MP| (2)利用三角形的正弦定理求出NP,MN,求出折线段赛道MNP的长,化简三角函数,利用三角函数的有界性求出最大值. 【解析】 (1)因为图象的最高点为 所以A=, 由图知y=Asinϖx的周期为T=12,又T=,所以ω=,所以y= 所以M(4,3),P(8,0) |MP|= (2)在△MNP中,∠MNP=120°,故θ∈(0°,60°) 由正弦定理得, 所以NP=,MN= 设使折线段赛道MNP为L则 L= = = 所以L的最大值是
复制答案
考点分析:
相关试题推荐
如图,开发商欲对边长为1km的正方形ABCD地段进行市场开发,拟在该地段的一角建设一个景观,需要建一条道路EF(点E、F分别在BC、CD上),根据规划要求△ECF的周长为2km.
(1)设∠BAE=α,∠DAF=β,试求α+β的大小;
(2)欲使△EAF的面积最小,试确定点E、F的位置.

manfen5.com 满分网 查看答案
如图1,OA,OB是某地一个湖泊的两条互相垂直的湖堤,线段CD和曲线段EF分别是湖泊中的一座栈桥和一条防波堤.为观光旅游的需要,拟过栈桥CD上某点M分别修建与OA,OB平行的栈桥MG、MK,且以MG、MK为边建一个跨越水面的三角形观光平台MGK.建立如图2所示的直角坐标系,测得线段CD的方程是x+2y=20(0≤x≤20),曲线段EF的方程是xy=200(5≤x≤40),设点M的坐标为(s,t),记z=s•t.(题中所涉及的长度单位均为米,栈桥和防波堤都不计宽度
(1)求z的取值范围;
(2)试写出三角形观光平台MGK面积S△MGK关于z的函数解析式,并求出该面积的最小值.

manfen5.com 满分网 manfen5.com 满分网 查看答案
已知角α的终边经过点P(-x,-6),且manfen5.com 满分网,则manfen5.com 满分网=    查看答案
已知x+y=manfen5.com 满分网,则x2+y2的值是:    查看答案
如果cosα=manfen5.com 满分网,且α是第四象限角,那么cos(manfen5.com 满分网+α)=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.