满分5 > 高中数学试题 >

设函数. (Ⅰ)当a=1时,过原点的直线与函数f(x)的图象相切于点P,求点P的...

设函数manfen5.com 满分网
(Ⅰ)当a=1时,过原点的直线与函数f(x)的图象相切于点P,求点P的坐标;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的单调区间;
(Ⅲ)当manfen5.com 满分网时,设函数manfen5.com 满分网,若对于∀x1∈(0,e],∃x2∈[0,1]使f(x1)≥g(x2)成立,求实数b的取值范围.(e是自然对数的底,manfen5.com 满分网
(Ⅰ)确定函数f(x)的定义域,求出导函数,利用过原点的直线与函数f(x)的图象相切于点P,可求点P的坐标; (Ⅱ)求导函数,f'(x)<0,可得函数的单调减区间;f'(x)>0,可得出函数f(x)的单调递增区间; (Ⅲ)∀x1∈(0,e],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值,由此可求b的取值范围. 【解析】 函数f(x)的定义域为(0,+∞),(2分) (Ⅰ)设点P(x,y)(x>0),当a=1时,f(x)=lnx-x-1,则y=lnx-x-1,, ∴(3分) 解得,故点P 的坐标为(e2,1-e2)(4分) (Ⅱ)= ∵,∴(5分) ∴当0<x<1,或时,f'(x)<0;当时,f'(x)>0 故当时,函数f(x)的单调递增区间为; 单调递减区间为(0,1),(7分) (Ⅲ)当时, 由(Ⅱ)可知函数f(x)在(0,1)上是减函数,在(1,2)上为增函数,在(2,e]上为减函数,且, ∵,又,∴(e-1)2<3, ∴f(e)>f(1),故函数f(x)在(0,e]上的最小值为(9分) 若∀x1∈(0,e],∃x2∈[0,1]使f(x1)≥g(x2)成立,等价于g(x)在[0,1]上的最小值不大于f(x)在(0,e]上的最小值(*)                                         (10分) 又,x∈[0,1] ①当b<0时,g(x)在[0,1]上为增函数,与(*)矛盾 ②当0≤b≤1时,,由及0≤b≤1得, ③当b>1时,g(x)在[0,1]上为减函数,, 此时b>1 综上,b的取值范围是(12分)
复制答案
考点分析:
相关试题推荐
如图,焦距为2的椭圆E的两个顶点分别为A和B,且manfen5.com 满分网manfen5.com 满分网共线.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.

manfen5.com 满分网 查看答案
某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如图1
所示统计表和如图2所示各年龄段人数频率分布直方图:
manfen5.com 满分网
manfen5.com 满分网
请完成以下问题:
(1)补全频率直方图,并求n,a,p的值
(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)
查看答案
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA,E为PD的上一点,且PE=2ED,F为PC的中点.
(Ⅰ)求证:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

manfen5.com 满分网 查看答案
已知△ABC中,a、b、c分别是三个内角A、B、C的对边,关于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若manfen5.com 满分网,△ABC的面积manfen5.com 满分网,求当角C取最大值时a+b的值.
查看答案
把正整数排列成如图甲三角形数阵,然后擦去第偶数行中的奇数和第奇数行中的偶数,得到如图乙的三角形数阵,再把图乙中的数按从小到大的顺序排成一列,得到一个数列{an},若an=2011,则n=    manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.