满分5 > 高中数学试题 >

选修4-1:几何证明讲 已知△ABC中,AB=AC,D是△ABC外接圆劣弧上的点...

选修4-1:几何证明讲
已知△ABC中,AB=AC,D是△ABC外接圆劣弧manfen5.com 满分网上的点(不与点A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+manfen5.com 满分网,求△ABC外接圆的面积.

manfen5.com 满分网
首先对于(1)要证明AD的延长线平分∠CDE,即证明∠EDF=∠CDF,转化为证明∠ADB=∠CDF,再根据A,B,C,D四点共圆的性质,和等腰三角形角之间的关系即可得到. 对于(2)求△ABC外接圆的面积.只需解出圆半径,故作等腰三角形底边上的垂直平分线即过圆心,再连接OC,根据角之间的关系在三角形内即可求得圆半径,可得到外接圆面积. 【解析】 (Ⅰ)如图,设F为AD延长线上一点 ∵A,B,C,D四点共圆,∴∠CDF=∠ABC 又AB=AC∴∠ABC=∠ACB,且∠ADB=∠ACB,∴∠ADB=∠CDF, 对顶角∠EDF=∠ADB,故∠EDF=∠CDF, 即AD的延长线平分∠CDE. (Ⅱ)设O为外接圆圆心,连接AO交BC于H,则AH⊥BC. 连接OC,由题意∠OAC=∠OCA=15°,∠ACB=75°,∴∠OCH=60°. 设圆半径为r,则r+r=2+,a得r=2, 外接圆的面积为4π. 故答案为4π.
复制答案
考点分析:
相关试题推荐
设函数manfen5.com 满分网
(Ⅰ)当a=1时,过原点的直线与函数f(x)的图象相切于点P,求点P的坐标;
(Ⅱ)当manfen5.com 满分网时,求函数f(x)的单调区间;
(Ⅲ)当manfen5.com 满分网时,设函数manfen5.com 满分网,若对于∀x1∈(0,e],∃x2∈[0,1]使f(x1)≥g(x2)成立,求实数b的取值范围.(e是自然对数的底,manfen5.com 满分网
查看答案
如图,焦距为2的椭圆E的两个顶点分别为A和B,且manfen5.com 满分网manfen5.com 满分网共线.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.

manfen5.com 满分网 查看答案
某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如图1
所示统计表和如图2所示各年龄段人数频率分布直方图:
manfen5.com 满分网
manfen5.com 满分网
请完成以下问题:
(1)补全频率直方图,并求n,a,p的值
(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)
查看答案
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA,E为PD的上一点,且PE=2ED,F为PC的中点.
(Ⅰ)求证:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.

manfen5.com 满分网 查看答案
已知△ABC中,a、b、c分别是三个内角A、B、C的对边,关于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若manfen5.com 满分网,△ABC的面积manfen5.com 满分网,求当角C取最大值时a+b的值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.