已知曲线C
1的极坐标方程为P=6cosθ,曲线C
2的极坐标方程为θ=
(p∈R),曲线C
1,C
2相交于A,B两点.
(Ⅰ)把曲线C
1,C
2的极坐标方程转化为直角坐标方程;
(Ⅱ)求弦AB的长度.
考点分析:
相关试题推荐
选修4-1:几何证明讲
已知△ABC中,AB=AC,D是△ABC外接圆劣弧
上的点(不与点A,C重合),延长BD至E.
(1)求证:AD的延长线平分∠CDE;
(2)若∠BAC=30°,△ABC中BC边上的高为2+
,求△ABC外接圆的面积.
查看答案
设函数
.
(Ⅰ)当a=1时,过原点的直线与函数f(x)的图象相切于点P,求点P的坐标;
(Ⅱ)当
时,求函数f(x)的单调区间;
(Ⅲ)当
时,设函数
,若对于∀x
1∈(0,e],∃x
2∈[0,1]使f(x
1)≥g(x
2)成立,求实数b的取值范围.(e是自然对数的底,
)
查看答案
如图,焦距为2的椭圆E的两个顶点分别为A和B,且
与
共线.
(Ⅰ)求椭圆E的标准方程;
(Ⅱ)若直线y=kx+m与椭圆E有两个不同的交点P和Q,且原点O总在以PQ为直径的圆的内部,求实数m的取值范围.
查看答案
某高中社团进行社会实践,对[25,55]岁的人群随机抽取n人进行了一次是否开通“微博”的调查,若开通“微博”的为“时尚族”,否则称为“非时尚族”.通过调查分别得到如图1
所示统计表和如图2所示各年龄段人数频率分布直方图:
请完成以下问题:
(1)补全频率直方图,并求n,a,p的值
(2)从[40,45)岁和[45,50)岁年龄段的“时尚族”中采用分层抽样法抽取18人参加网络时尚达人大赛,其中选取3人作为领队,记选取的3名领队中年龄在[40,45)岁得人数为X,求X的分布列和数学期望E(X)
查看答案
如图,在四棱锥P-ABCD中,侧棱PA⊥底面ABCD,底面ABCD为矩形,AD=2AB=2PA,E为PD的上一点,且PE=2ED,F为PC的中点.
(Ⅰ)求证:BF∥平面AEC;
(Ⅱ)求二面角E-AC-D的余弦值.
查看答案