满分5 > 高中数学试题 >

已知椭圆的离心率为,其左、右焦点分别为F1,F2,点P(x,y)是坐标平面内一点...

已知椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,其左、右焦点分别为F1,F2,点P(x,y)是坐标平面内一点,且manfen5.com 满分网(O为坐标原点).
(1)求椭圆C的方程;
(2)过点manfen5.com 满分网且斜率为k的动直线l交椭圆于A、B两点,在y轴上是否存在定点M,使以AB为直径的圆恒过这个点?若存在,求出M的坐标,若不存在,说明理由.
(1)设出P的坐标,利用|OP|的值求得x和y的关系式,同时利用求得x和y的另一关系式,进而求得c,通过椭圆的离心率求得a,最后利用a,b和c的关系求得b,则椭圆的方程可得. (2)设出直线l的方程,与椭圆方程联立消去y,设A(x1,y1),B(x2,y2),则可利用韦达定理表示出x1+x2和x1x2,假设在y轴上存在定点M(0,m),满足题设,则可表示出,利用=0求得m的值. 【解析】 (1)设P(x,y),F1(-c,0),F2(c,0), 则由; 由得, 即. 所以c=1 又因为. 因此所求椭圆的方程为:. (2)动直线l的方程为:, 由得. 设A(x1,y1),B(x2,y2). 则. 假设在y轴上存在定点M(0,m),满足题设,则. = = = = 由假设得对于任意的恒成立, 即解得m=1. 因此,在y轴上存在定点M,使得以AB为直径的圆恒过这个点, 点M的坐标为(0,1)
复制答案
考点分析:
相关试题推荐
如图,三棱柱ABC-A1B1C1中,侧面AA1C1C⊥底面ABC,AA1=A1C=AC=2,AB=BC,且AB⊥BC,O为AC中点.
(Ⅰ)证明:A1O⊥平面ABC;
(Ⅱ)求直线A1C与平面A1AB所成角的正弦值;
(Ⅲ)在BC1上是否存在一点E,使得OE∥平面A1AB,若不存在,说明理由;若存在,确定点E的位置.

manfen5.com 满分网 查看答案
数列{an}的前n项和是Sn,且manfen5.com 满分网
(1)求数列{an}的通项公式;
(2)记manfen5.com 满分网,数列manfen5.com 满分网的前n项和为Tn,证明:manfen5.com 满分网
查看答案
函数f(x)=Asin(ωx+φ)(A>0,ω>0,-manfen5.com 满分网<φ<manfen5.com 满分网)(x∈R)的部分图象如图所示.
(1)求函数y=f(x)的解析式;
(2)当x∈[-π,-manfen5.com 满分网]时,求f(x)的取值范围.

manfen5.com 满分网 查看答案
定义在R上的函数f(x)满足f(x)+f(x+5)=16,当x∈(-1,4]时,f(x)=x2-2x,则函数f(x)在[0,2013]上的零点个数是    查看答案
若一个正四面体的表面积为S1,其内切球的表面积为S2,则manfen5.com 满分网=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.