满分5 > 高中数学试题 >

对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名...

对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

manfen5.com 满分网
(I)根据频率,频数和样本容量之间的关系即频率等于频数除以样本容量,写出算式,求出式子中的字母的值. (II)根据该校高三学生有240人,分组[10,15)内的频率是0.25,估计该校高三学生参加社区服务的次数在此区间内的人数为60人. (III)这个样本参加社区服务的次数不少于20次的学生共有m+2=6人,设出在区间[20,25)内的人为a1,a2,a3,a4,在区间[25,30)内的人为b1,b2,列举出所有事件和满足条件的事件,得到概率. 【解析】 (Ⅰ)由分组[10,15)内的频数是10,频率是0.25知,, ∴M=40. ∵频数之和为40, ∴10+24+m+2=40,m=4.. ∵a是对应分组[15,20)的频率与组距的商, ∴ (Ⅱ)因为该校高三学生有240人,分组[10,15)内的频率是0.25, ∴估计该校高三学生参加社区服务的次数在此区间内的人数为60人. (Ⅲ)这个样本参加社区服务的次数不少于20次的学生共有m+2=6人, 设在区间[20,25)内的人为a1,a2,a3,a4,在区间[25,30)内的人为b1,b2. 则任选2人共有(a1,a2),(a1,a3),(a1,a4),(a1,b1),(a1,b2),(a2,a3),(a2,a4),(a2,b1),(a2,b2),(a3,a4),(a3,b1),(a3,b2),(a4,b1),(a4,b2),(b1,b2)15种情况, 而两人都在[25,30)内只能是(b1,b2)一种, ∴所求概率为.
复制答案
考点分析:
相关试题推荐
给出下列说法:
①从匀速传递的产品生产线上每隔20分钟抽取一件产品进行某种检测,这样的抽样为系统抽样;
②若随机变量若ξ-N(1,4),P(ξ≤0)=m,则P(0<ξ<1)=manfen5.com 满分网-m;
③在回归直线manfen5.com 满分网=0.2x+2中,当变量x每增加1个单位时,manfen5.com 满分网平均增加2个单位;
④在2×2列联表中,K2=13.079,则有99.9%的把握认为两个变量有关系.
附表:
P(k2≥k0.050.0250.0100.0050.001
k3.8415.0246.6357.87910.828
其中正确说法的序号为    (把所有正确说法的序号都写上) 查看答案
某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,可以有    %的把握认为该学校15至16周岁的男生的身高和体重之间有关系.
超重不超重合计
偏高415
不偏高31215
合计71320

manfen5.com 满分网 查看答案
在求两个变量x和y的线性回归方程过程中,计算得manfen5.com 满分网=25,manfen5.com 满分网=250,manfen5.com 满分网=145,manfen5.com 满分网=1380,则该回归方程是    查看答案
样本数为9的一组数据,它们的平均数是5,频率条形图如图,则其标准差等于    .(保留根号)
manfen5.com 满分网 查看答案
某企业有职150人,其中高级职15人,中级职45人,一般职90人,现抽30人进行分层抽样,则各职称人数分别为( )
A.5,10,15
B.3,9,18
C.3,10,17
D.5,9,16
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.