满分5 > 高中数学试题 >

为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列...

为了解某班学生喜爱打篮球是否与性别有关,对此班50人进行了问卷调查得到了如下的列联表:
喜爱打篮球不喜爱打篮球合计
男生5
女生10
合计50
已知在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为manfen5.com 满分网
(1)请将上面的列联表补充完整;
(2)是否有99.5%的把握认为喜爱打篮球与性别有关?说明你的理由;
(3)已知喜爱打篮球的10位女生中,A1,A2,A3,A4,A5还喜欢打羽毛球,B1,B2,B3还喜欢打乒乓球,C1,C2还喜欢踢足球,现再从喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的女生中各选出1名进行其他方面的调查,求B1和C1不全被选中的概率.
下面的临界值表供参考:
p(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考公式:manfen5.com 满分网,其中n=a+b+c+d)
(1)根据在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率,做出喜爱打篮球的人数,进而做出男生的人数,填好表格. (2)根据所给的公式,代入数据求出临界值,把求得的结果同临界值表进行比较,看出有多大的把握说明打篮球和性别有关系. (3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名,其一切可能的结果组成的基本事件有5×3×2,而满足条件的事件B1和C1不全被选中,通过列举得到事件数,求出概率. 【解析】 (1)∵在全部50人中随机抽取1人抽到喜爱打篮球的学生的概率为. ∴在50人中,喜爱打篮球的有=30, ∴男生喜爱打篮球的有30-10=20, 列联表补充如下: 喜爱打篮球 不喜爱打篮球 合计 男生 20 5 25 女生 10 15 25 合计 30 20 50 (2)∵ ∴有99.5%的把握认为喜爱打篮球与性别有关. (3)从10位女生中选出喜欢打羽毛球、喜欢打乒乓球、喜欢踢足球的各1名, 其一切可能的结果组成的基本事件有5×3×2=30种,如下:(A1,B1,C1),(A1,B1,C2),(A1,B2,C1),(A1,B2,C2),(A1,B3,C1),(A1,B3,C2),(A2,B1,C1),(A2,B1,C2),(A2,B2,C1),(A2,B2,C2),(A2,B3,C1),(A2,B3,C2),(A3,B1,C1),(A3,B1,C2),(A3,B2,C1),(A3,B3,C2),(A3,B2,C2),(A3,B3,C1),(A4,B1,C1),(A4,B1,C2),(A4,B2,C1),(A4,B2,C2),(A4,B3,C1),(A4,B3,C2),(A5,B1,C1),(A5,B1,C2),(A5,B2,C1),(A5,B2,C2),(A5,B3,C1),(A5,B3,C2), 基本事件的总数为30, 用M表示“B1,C1不全被选中”这一事件, 则其对立事件表示“B1,C1全被选中”这一事件, 由于由(A1,B1,C1),(A2,B1,C1),(A3,B1,C1),(A4,B1,C1),(A5,B1,C1) 5个基本事件组成, ∴, ∴由对立事件的概率公式得.
复制答案
考点分析:
相关试题推荐
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

manfen5.com 满分网 查看答案
给出下列说法:
①从匀速传递的产品生产线上每隔20分钟抽取一件产品进行某种检测,这样的抽样为系统抽样;
②若随机变量若ξ-N(1,4),P(ξ≤0)=m,则P(0<ξ<1)=manfen5.com 满分网-m;
③在回归直线manfen5.com 满分网=0.2x+2中,当变量x每增加1个单位时,manfen5.com 满分网平均增加2个单位;
④在2×2列联表中,K2=13.079,则有99.9%的把握认为两个变量有关系.
附表:
P(k2≥k0.050.0250.0100.0050.001
k3.8415.0246.6357.87910.828
其中正确说法的序号为    (把所有正确说法的序号都写上) 查看答案
某研究小组为了研究中学生的身体发育情况,在某学校随机抽出20名15至16周岁的男生,将他们的身高和体重制成2×2的列联表,根据列联表的数据,可以有    %的把握认为该学校15至16周岁的男生的身高和体重之间有关系.
超重不超重合计
偏高415
不偏高31215
合计71320

manfen5.com 满分网 查看答案
在求两个变量x和y的线性回归方程过程中,计算得manfen5.com 满分网=25,manfen5.com 满分网=250,manfen5.com 满分网=145,manfen5.com 满分网=1380,则该回归方程是    查看答案
样本数为9的一组数据,它们的平均数是5,频率条形图如图,则其标准差等于    .(保留根号)
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.