满分5 > 高中数学试题 >

已知函数f(x)=x3-3ax(a∈R) (1)当a=1时,求f(x)的极小值;...

已知函数f(x)=x3-3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;
(3)设g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.
(1)由f(x)=x3-3ax,得f′(x)=3x2-3a,当f′(x)>0,f′(x)<0时,分别得到f(x)的单调递增区间、单调递减区间,由此可以得到极小值为f(1)=-2. (2)要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,只需令直线的斜率-1小于f(x)的切线的最小值即可,也就是-1<-3a. (3)由已知易得g(x)为[-1,1]上的偶函数,只需求在[0,1]上的最大值F(a).有必要对a进行讨论:①当a≤0时,f′(x)≥0,得F(a)=f(1)=1-3a;②当a≥1时,f(x)≤0,且f(x)在[0,1]上单调递减,得g(x)=-f(x),则F(a)=-f(1)=3a-1;当0<a<1时,得f(x)在[0,]上单调递减,在[,1]上单调递增.当f(1)≤0时,f(x)≤0,所以得g(x)=-f(x),F(a)=-f()=2a,当f(1)>0,需要g(x)在x=处的极值与f(1)进行比较大小,分别求出a的取值范围,即综上所述求出F(a)的解析式. 【解析】 (1)∵当a=1时,f′(x)=3x2-3,令f′(x)=0,得x=-1或x=1,当f′(x)<0,即x∈(-1,1)时,f(x)为减函数;当f′(x)>0,即x∈(-∞,-1],或x∈[1,+∞)时,f(x)为增函数.∴f(x)在(-1,1)上单调递减,在(-∞,-1],[1,+∞)上单调递增∴f(x)的极小值是f(1)=-2 (2)∵f′(x)=3x2-3a≥-3a,∴要使直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,当且仅当-1<-3a时成立,∴ (3)因g(x)=|f(x)|=|x3-3ax|在[-1,1]上是偶函数,故只要求在[0,1]上的最大值 ①当a≤0时,f′(x)≥0,f(x)在[0,1]上单调递增且f(0)=0,∴g(x)=f(x),F(a)=f(1)=1-3a. ②当a>0时,, (ⅰ)当时,g(x)=|f(x)|=-f(x),-f(x)在[0,1]上单调递增,此时F(a)=-f(1)=3a-1 (ⅱ)当时,当f′(x)>0,即x>或x<-时,f(x)单调递增;当f′(x)<0,即-<x<时,f(x)单调递减.所以,在单调递增. 1°当时,,; 2°当 (ⅰ)当 (ⅱ)当 综上所述
复制答案
考点分析:
相关试题推荐
如图,椭圆manfen5.com 满分网的离心率为manfen5.com 满分网,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求manfen5.com 满分网的最大值及取得最大值时m的值.

manfen5.com 满分网 查看答案
已知向量manfen5.com 满分网=(an,2n),manfen5.com 满分网=(2n+1,-an+1),n∈N*,向量manfen5.com 满分网 与manfen5.com 满分网 垂直,且a1=1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an•bn}的前n项和Sn
查看答案
manfen5.com 满分网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(1)求证:EF∥平面ABC1D1
(2)求证:EF⊥B1C;
(3)求三棱锥manfen5.com 满分网的体积.
查看答案
已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数manfen5.com 满分网的图象关于直线manfen5.com 满分网对称,求φ的值.
查看答案
某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目.
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.