已知函数f(x)=x
3-3ax(a∈R)
(1)当a=1时,求f(x)的极小值;
(2)若直线x+y+m=0对任意的m∈R都不是曲线y=f(x)的切线,求a的取值范围;
(3)设g(x)=|f(x)|,x∈[-1,1],求g(x)的最大值F(a)的解析式.
考点分析:
相关试题推荐
如图,椭圆
的离心率为
,直线x=±a和y=±b所围成的矩形ABCD的面积为8.
(Ⅰ)求椭圆M的标准方程;
(Ⅱ) 设直线l:y=x+m(m∈R)与椭圆M有两个不同的交点P,Q,l与矩形ABCD有两个不同的交点S,T.求
的最大值及取得最大值时m的值.
查看答案
已知向量
=(a
n,2
n),
=(2
n+1,-a
n+1),n∈N
*,向量
与
垂直,且a
1=1
(1)求数列{a
n}的通项公式;
(2)若数列{b
n}满足b
n=log
2a
n+1,求数列{a
n•b
n}的前n项和S
n.
查看答案
如图所示,在棱长为2的正方体ABCD-A
1B
1C
1D
1中,E、F分别为DD
1、DB的中点.
(1)求证:EF∥平面ABC
1D
1;
(2)求证:EF⊥B
1C;
(3)求三棱锥
的体积.
查看答案
已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数
的图象关于直线
对称,求φ的值.
查看答案
某地区有小学21所,中学14所,大学7所,现采取分层抽样的方法从这些学校中抽取6所学校对学生进行视力调查.
(1)求应从小学、中学、大学中分别抽取的学校数目.
(2)若从抽取的6所学校中随机抽取2所学校做进一步数据分析,求抽取的2所学校均为小学的概率.
查看答案