满分5 > 高中数学试题 >

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD...

如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥面ABCD.AD=1,manfen5.com 满分网,BC=4.
(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成角;
(3)设点E在棱PC、上,manfen5.com 满分网,若DE∥面PAB,求λ的值.

manfen5.com 满分网
(1)根据余弦定理求出DC的长,而BC2=DB2+DC2,根据勾股定理可得BD⊥DC,而PD⊥面ABCD,则BD⊥PD,PD∩CD=D,根据线面垂直判定定理可知BD⊥面PDC,而PC在面PDC内,根据线面垂直的性质可知BD⊥PC; (2)在底面ABCD内过D作直线DF∥AB,交BC于F,分别以DA、DF、DP为x、y、z轴建立空间坐标系,根据(1)知BD⊥面PDC,则就是面PDC的法向量,设AB与面PDC所成角大小为θ,利用向量的夹角公式求出θ即可. (3)先求出向量,,,,,设=(x,y,z)为面PAB的法向量,根据•=0,•=0,求出,再根据DE∥面PAB,则•=0求出λ即可. 【解析】 (1)∵∠DAB=90°,AD=1,AB=,∴BD=2,∠ABD=30°, ∵BC∥AD∴∠DBC=60°,BC=4,由余弦定理得DC=2,(3分) BC2=DB2+DC2,∴BD⊥DC, ∵PD⊥面ABCD,∴BD⊥PD,PD∩CD=D,∴BD⊥面PDC, ∵PC在面PDC内,∴BD⊥PC(5分) (2)在底面ABCD内过D作直线DF∥AB,交BC于F, 分别以DA、DF、DP为x、y、z轴建立如图空间坐标系,(6分) 由(1)知BD⊥面PDC,∴就是面PDC的法向量,(7分) A(1,0,0),B(1,,0),P(0,0,a)=(0,,0),=(1,,0),(8分) 设AB与面PDC所成角大小为θ,cosθ==,(9分) ∵θ∈(0,)∴θ=(10分) (3)在(2)中的空间坐标系中A、(1,0,0),B、(1,,0),P(0,0,a)C、(-3,,0),(11分) =(-3,,-a),=(-3λ,λ,-aλ), =+=(0,0,a)+(-3λ,λ,-aλ)=(-3λ,λ,a-aλ)(12分) =(0,,0),=(1,0,-a), 设=(x,y,z)为面PAB的法向量, 由•=0, 得y=0,由•=0,得x-az=0,取x=a,z=1,=(a,0,1),(14分) 由D、E∥面PAB得:⊥,∴•=0,-3aλ+a-aλ=0,∴λ=(15分)
复制答案
考点分析:
相关试题推荐
已知α为锐角,且manfen5.com 满分网,函数manfen5.com 满分网,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)在△ABC中,若∠A=2α,manfen5.com 满分网,BC=2,求△ABC的面积
(3)求数列{an}的前n项和Sn
查看答案
在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.
(Ⅰ)若manfen5.com 满分网,求tanC的大小;
(Ⅱ)若a=2,△ABC的面积manfen5.com 满分网,且b>c,求b,c.
查看答案
已知函数f(x)=cos2x+sin2x
(1)求f(x)的最大值和最小正周期;
(2)设α,βmanfen5.com 满分网,f(manfen5.com 满分网)=manfen5.com 满分网,f(manfen5.com 满分网)=manfen5.com 满分网,求sin(α+β)的值.
查看答案
已知等差数列an的首项a1及公差d都是整数,前n项和为Sn,若a1>1,a4>3,S3≤9,设bn=2nan,则b1+b2+…+bn的结果为    查看答案
四棱锥P-ABCD的三视图如图所示,四棱锥P-ABCD的五个顶点都在一个球面上,E、F分别是棱AB、CD的中点,直线EF被球面所截得的线段长为manfen5.com 满分网,则该球表面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.