(I)函数的定义域是(0,+∞),把代入函数解析式,求其导数,根据求解目标,这个导数在函数定义域内只有一个等于零的点,判断这唯一的极值点是极大值点即可;
(II)即函数F(x)的导数在(0,3]小于或者等于恒成立,分离参数后转化为函数的最值;
(III)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf(x)=x2有唯一实数解,得到m所满足的方程,解方程求解m.
【解析】
(I)依题意,知f(x)的定义域为(0,+∞),当时,,(2′)
令f'(x)=0,解得x=1.(∵x>0)
因为g(x)=0有唯一解,所以g(x2)=0,当0<x<1时,f'(x)>0,此时f(x)单调递增;
当x>1时,f'(x)<0,此时f(x)单调递减.
所以f(x)的极大值为,此即为最大值…(4分)
(II),x∈(0,3],则有≤,在x∈(0,3]上恒成立,
所以a≥,x∈(0,3],
当x=1时,取得最大值,
所以a≥…(8分)
(III)因为方程2mf(x)=x2有唯一实数解,所以x2-2mlnx-2mx=0有唯一实数解,
设g(x)=x2-2mlnx-2mx,则.
令g'(x)=0,x2-mx-m=0.因为m>0,x>0,
所以(舍去),,
当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减,
当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增
当x=x2时,g'(x2)=0,g(x)取最小值g(x2).(12′)
则既
所以2mlnx2+mx2-m=0,因为m>0,所以2lnx2+x2-1=0(*)
设函数h(x)=2lnx+x-1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解.
因为h(1)=0,所以方程(*)的解为x2=1,即,解得.…(12分)