满分5 > 高中数学试题 >

已知椭圆C:+=1(a>b>0)的离心率为,以原点为圆心,椭圆的短半轴长为半径的...

已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当|manfen5.com 满分网-manfen5.com 满分网|<manfen5.com 满分网时,求实数t取值范围.
(Ⅰ)由题意知,所以.由此能求出椭圆C的方程. (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y),由得(1+2k2)x2-8k2x+8k2-2=0再由根的判别式和嘏达定理进行求解. 【解析】 (Ⅰ)由题意知,所以. 即a2=2b2.(2分) 又因为,所以a2=2,. 故椭圆C的方程为.(4分) (Ⅱ)由题意知直线AB的斜率存在.设AB:y=k(x-2),A(x1,y1),B(x2,y2),P(x,y), 由得(1+2k2)x2-8k2x+8k2-2=0.△=64k4-4(2k2+1)(8k2-2)>0,.(6分) ,∵∴(x1+x2,y1+y2)=t(x,y), ∴, ∵点P在椭圆上,∴,∴16k2=t2(1+2k2).(8分) ∵<,∴,∴ ∴,∴(4k2-1)(14k2+13)>0,∴.(10分) ∴,∵16k2=t2(1+2k2),∴, ∴或,∴实数t取值范围为.(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网-lnx,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
查看答案
在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=2EF,manfen5.com 满分网
(1)求证:AE⊥平面BCEF;
(2)求二面角A-BF-C的大小.

manfen5.com 满分网 查看答案
在一次抢险救灾中,某救援队的50名队员被分别分派到四个不同的区域参加救援工作,其分布的情况如下表,从这50名队员中随机抽出2人去完成一项特殊任务.
区域ABCD
人数2010515
(1)求这2人来自同一区域的概率;
(2)若这2人来自区域A,D,并记来自区域A队员中的人数为ξ,求随机变量ξ的分布列及数学期望.
查看答案
已知等比数列{an}满足a2=2,且2a3+a4=a5,an>0.
(1)求数列{an}的通项公式;
(2)设bn=(-1)n3an+2n+1,数列{bn}的前项和为Tn,求Tn
查看答案
如图,已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则以球心O为顶点,以球O被平面ACD1所截得的圆为底面的圆锥的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.