满分5 > 高中数学试题 >

已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标...

已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为manfen5.com 满分网为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换manfen5.com 满分网得到曲线C′,设曲线C′上任一点为M(x,y),求manfen5.com 满分网的最小值.
(1)利用ρ2=x2+y2,将ρ=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x-1)代入下式消去参数t即可; (2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值. 【解析】 (1)直线l的参数方程为为参数). 由上式化简成t=2(x-1)代入下式得 根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分) (2)∵代入C得∴(5分) 设椭圆的参数方程为参数)(7分) 则(9分) 则的最小值为-4.(10分)
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图所示,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分
线与BC和⊙O分别交于点D和E.
( I)求证:manfen5.com 满分网
( II)求AD•AE的值.

manfen5.com 满分网 查看答案
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当|manfen5.com 满分网-manfen5.com 满分网|<manfen5.com 满分网时,求实数t取值范围.
查看答案
已知函数f(x)=manfen5.com 满分网-lnx,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
查看答案
在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=2EF,manfen5.com 满分网
(1)求证:AE⊥平面BCEF;
(2)求二面角A-BF-C的大小.

manfen5.com 满分网 查看答案
在一次抢险救灾中,某救援队的50名队员被分别分派到四个不同的区域参加救援工作,其分布的情况如下表,从这50名队员中随机抽出2人去完成一项特殊任务.
区域ABCD
人数2010515
(1)求这2人来自同一区域的概率;
(2)若这2人来自区域A,D,并记来自区域A队员中的人数为ξ,求随机变量ξ的分布列及数学期望.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.