满分5 > 高中数学试题 >

设函数f(x)=|x-1|+|x-a|, (1)若a=-1,解不等式f(x)≥3...

设函数f(x)=|x-1|+|x-a|,
(1)若a=-1,解不等式f(x)≥3;
(2)如果x∈R,f(x)≥2,求a的取值范围.
(1)当a=-1,原不等式变为:|x-1|+|x+1|≥3,下面利用对值几何意义求解,利用数轴上表示实数-左侧的点与表示实数右侧的点与表示实数-1与1的点距离之和不小3,从而得到不等式解集. (2)欲求当x∈R,f(x)≥2,a的取值范围,先对a进行分类讨论:a=1;a<1;a>1.对后两种情形,只须求出f(x)的最小值,最后“x∈R,f(x)≥2”的充要条件是|a-1|≥2即可求得结果. 【解析】 (1)当a=-1时,f(x)=|x-1|+|x+1|,由f(x)≥3有|x-1|+|x+1|≥3 据绝对值几何意义求解,|x-1|+|x+1|≥3几何意义,是数轴上表示实数x的点距离实数1,-1表示的点距离之和不小3, 由于数轴上数-左侧的点与数右侧的点与数-1与1的距离之和不小3, 所以所求不等式解集为(-∞,-]∪[,+∞) (2)由绝对值的几何意义知,数轴上到1的距离与到a的距离之和大于等于2恒成立,则1与a之间的距离必大于等于2,从而有a∈(-∞,-1]∪[3,+∞)
复制答案
考点分析:
相关试题推荐
已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为manfen5.com 满分网为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换manfen5.com 满分网得到曲线C′,设曲线C′上任一点为M(x,y),求manfen5.com 满分网的最小值.
查看答案
选修4-1:几何证明选讲
如图所示,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分
线与BC和⊙O分别交于点D和E.
( I)求证:manfen5.com 满分网
( II)求AD•AE的值.

manfen5.com 满分网 查看答案
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,以原点为圆心,椭圆的短半轴长为半径的圆与直线x-y+manfen5.com 满分网=0相切.
(Ⅰ)求椭圆C的方程;
(Ⅱ)若过点M(2,0)的直线与椭圆C相交于A,B两点,设P为椭圆上一点,且满足manfen5.com 满分网(O为坐标原点),当|manfen5.com 满分网-manfen5.com 满分网|<manfen5.com 满分网时,求实数t取值范围.
查看答案
已知函数f(x)=manfen5.com 满分网-lnx,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
查看答案
在如图所示的几何体中,平面ACE⊥平面ABCD,四边形ABCD为平行四边形,∠ACB=90°,EF∥BC,AC=BC=2EF,manfen5.com 满分网
(1)求证:AE⊥平面BCEF;
(2)求二面角A-BF-C的大小.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.