在平面直角坐标系中xOy中,O为坐标原点,A(-2,0),B(2,0),点P为动点,且直线AP与直线BP的斜率之积为
.
(1)求动点P的轨迹C的方程;
(2)过点D(1,0)的直线l交轨迹C于不同的两点M,N,△MON的面积是否存在最大值?若存在,求出△MON的面积的最大值及相应的直线方程;若不存在,请说明理由.
考点分析:
相关试题推荐
随着建设资源节约型、环境友好型社会的宣传与实践,低碳绿色的出行方式越来越受到追捧,全国各地兴起了建设公共自行车租赁系统的热潮,据不完全统计,已有北京、株洲、杭州、太原、苏州、深圳等城市建设成公共自行车租赁系统,某市公共自行车实行60分钟内免费租用,60分钟以上至120分钟(含),收取1元租车服务费,120分钟以上至180分钟(含),收取2元租车服务费,超过180分钟以上的时间,按每小时3元计费(不足一小时的按一小时计),租车费用实行分段合计.现有甲,乙两人相互独立到租车点租车上班(各租一车一次),设甲,乙不超过1小时还车的概率分别为
小时以上且不超过2小时还车的概率分别为
小时以上且不超过3小时还车的概率分别为
,两人租车时间均不会超过4小时.
(1)求甲、乙两人所付租车费用相同的概率.
(2)设甲一周内有四天(每天租车一次)均租车上班,X表示一周内租车费用不超过2元的次数,求X的分布列与数学期望.
查看答案
如图,在四棱锥P-ABCD中,平面PAB⊥平面ABCD,AD∥BC,∠ABC=90°,PA=PB=3,BC=1,AB=2,AD=3,O是AB的中点.
(1)证明:CD⊥平面POC;
(2)求二面角C-PD-O的余弦值的大小.
查看答案
设数列{a
n}满足:a
1+2a
2+3a
3+…+na
n=2
n(n∈N
*).
(1)求数列{a
n}的通项公式;
(2)设b
n=n
2a
n,求数列{b
n}的前n项和S
n.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,2bcosB=acosC+ccosA,且b
2=3ac,则角A的大小为
.
查看答案
的展开式中各项系数之和为729,则该展开式中x
2的系数为
.
查看答案