满分5 > 高中数学试题 >

若集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=x...

若集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=manfen5.com 满分网x2-x+manfen5.com 满分网,0≤x≤3}
(1)若A∩B=∅,求实数a的取值范围;
(2)当a取使不等式x2+1≥ax恒成立的最小值时,求(CRA)∩B.
(1)解一元二次不等式求出集合A和集合B,由A∩B=∅,可得集合的端点满足a≤2 且 a2+1≥4,由此求得实数a的取值范围. (2)由条件判断-2≤a≤2,求出CRA,分a2+1<2、2≤a2+1≤4,a2+1>4三种情况求出(CRA)∩B. 【解析】 (1)∵集合A={y|y2-(a2+a+1)y+a(a2+1)>0}={y|(y-a)(y-a2-1)>0}={y|y<a,或y>a2+1}, B={y|y=x2-x+,0≤x≤3}={y|y=(x-1)2+2,0≤x≤3}={y|2≤y≤4}. A∩B=∅, ∴a≤2 且 a2+1≥4,解得≤a≤2,故实数a的取值范围为[,2]. (2)当a取使不等式x2+1≥ax恒成立的最小值时,判别式△=a2-4≤0, 解得-2≤a≤2. 由(1)可得CRA={y|a≤y≤a2+1 },B={y|2≤y≤4}. 当 a2+1<2,即-1<a<1时,(CRA)∩B=∅. 当2≤a2+1≤4,即 1≤a≤ 或-≤a≤-1 时,(CRA)∩B=[2,a2+1]. 当a2+1>4时,即 2≥a> 或-2≤a<-时,(CRA)∩B=B=[2 4].
复制答案
考点分析:
相关试题推荐
定义在R上的函数y=f(x)是减函数,y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当manfen5.com 满分网的取值范围是    查看答案
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=    查看答案
已知函数f(x)=alog2x+blog3x+2,且manfen5.com 满分网,则f(2012)的值为    查看答案
manfen5.com 满分网则不等式f(x)>2的解集为    查看答案
若函数f(x)=2x2-lnx在其定义域的一个子区间(k-1,k+1)内不是单调函数,则实数k的取值范围是( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.