满分5 > 高中数学试题 >

等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数...

等比数列{an}的前n项和为Sn,已知对任意的n∈N*,点(n,Sn),均在函数y=bx+r(b>0)且b≠1,b,r均为常数)的图象上.
(1)求r的值;
(2)当b=2时,记bn=manfen5.com 满分网(n∈N*),求数列{bn}的前n项和Tn
(1)由“对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上”可得到Sn=bn+r,依次求出a1、a2、a3,由等比数列的性质(a2)2=a1×a3,解可得答案. (2)结合(1)可知an=(b-1)bn-1=2n-1,从而bn=,符合一个等差数列与等比数列相应项之积的形式,用错位相减法求解即可. 【解析】 因为对任意的n∈N+,点(n,Sn),均在函数y=bx+r(b>0,且b≠1,b,r均为常数)的图象上. 所以得Sn=bn+r, 当n=1时,a1=S1=b+r, a2=S2-S1=b2+r-(b1+r)=b2-b1=(b-1)b, a3=S3-S2=b3+r-(b2+r)=b3-b2=(b-1)b2, 又因为{an}为等比数列,所以(a2)2=a1×a3, 解可得r=-1, (2)当b=2时,an=(b-1)bn-1=2n-1,bn= 则Tn= Tn= 相减,得Tn= += 所以Tn=
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2sinmanfen5.com 满分网cosmanfen5.com 满分网-2manfen5.com 满分网sin2manfen5.com 满分网+manfen5.com 满分网
(1)求函数f(x)的最大值,并写出相应的x取值集合;
(2)令f(α+manfen5.com 满分网)=manfen5.com 满分网,且α∈(0,π),求tan2α的值.
查看答案
若集合A={y|y2-(a2+a+1)y+a(a2+1)>0},B={y|y=manfen5.com 满分网x2-x+manfen5.com 满分网,0≤x≤3}
(1)若A∩B=∅,求实数a的取值范围;
(2)当a取使不等式x2+1≥ax恒成立的最小值时,求(CRA)∩B.
查看答案
定义在R上的函数y=f(x)是减函数,y=f(x-1)的图象关于(1,0)成中心对称,若s,t满足不等式f(s2-2s)≤-f(2t-t2),则当manfen5.com 满分网的取值范围是    查看答案
已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数.若方程f(x)=m(m>0)在区间[-8,8]上有四个不同的根x1,x2,x3,x4,则x1+x2+x3+x4=    查看答案
已知函数f(x)=alog2x+blog3x+2,且manfen5.com 满分网,则f(2012)的值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.