满分5 > 高中数学试题 >

已知函数f(x)=-lnx,x∈[1,3], (1)求f(x)的最大值与最小值;...

已知函数f(x)=manfen5.com 满分网-lnx,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
(1)直接求出函数的导数,通过导数为0,求出函数的极值点,判断函数的单调性,利用最值定理求出f(x)的最大值与最小值; (2)利用(1)的结论,f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,转化为4-at>对任意t∈[0,2]恒成立,通过,求实数a的取值范围. 【解析】 (1)因为函数f(x)=-lnx, 所以f′(x)=,令f′(x)=0得x=±2, 因为x∈[1,3],  当1<x<2时  f′(x)<0;当2<x<3时,f′(x)>0; ∴f(x)在(1,2)上单调减函数,在(2,3)上单调增函数, ∴f(x)在x=2处取得极小值f(2)=-ln2;  又f(1)=,f(3)=, ∵ln3>1∴ ∴f(1)>f(3), ∴x=1时 f(x)的最大值为, x=2时函数取得最小值为-ln2. (2)由(1)知当x∈[1,3]时,f(x), 故对任意x∈[1,3],f(x)<4-at恒成立, 只要4-at>对任意t∈[0,2]恒成立,即at恒成立 记 g(t)=at,t∈[0,2] ∴,解得a, ∴实数a的取值范围是(-∞,).
复制答案
考点分析:
相关试题推荐
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,连接椭圆的四个顶点得到的菱形的面积为2manfen5.com 满分网
(1)求椭圆C的方程;
(2)若过点(2,0)的直线l的与椭圆C交于A、B两点,O为坐标原点,当∠AOB为锐角时,求直线l的斜率k的取值范围.
查看答案
如图,已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.
(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M-EFG的体积.

manfen5.com 满分网 查看答案
为预防H1N1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
分组A组B组C组
疫苗有效673ab
疫苗无效7790c
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知b≥465,c≥30,求通过测试的概率.
查看答案
已知等比数列{an}满足a2=2,且2a3+a4=a5,an>0.
(1)求数列{an}的通项公式;
(2)设bn=(-1)n3an+2n+1,数列{bn}的前项和为Tn,求Tn
查看答案
如图,已知球O是棱长为1的正方体ABCD-A1B1C1D1的内切球,则以球心O为顶点,以球O被平面ACD1所截得的圆为底面的圆锥的体积为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.