满分5 > 高中数学试题 >

已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标...

已知曲线C的极坐标方程是ρ=1,以极点为原点,极轴为x轴的正半轴建立平面直角坐标系,直线l的参数方程为manfen5.com 满分网为参数).
(1)写出直线l与曲线C的直角坐标方程;
(2)设曲线C经过伸缩变换manfen5.com 满分网得到曲线C′,设曲线C′上任一点为M(x,y),求manfen5.com 满分网的最小值.
(1)利用ρ2=x2+y2,将ρ=1转化成直角坐标方程,然后将直线的参数方程的上式化简成t=2(x-1)代入下式消去参数t即可; (2)根据伸缩变换公式求出变换后的曲线方程,然后利用参数方程表示出曲线上任意一点,代入,根据三角函数的辅助角公式求出最小值. 【解析】 (1)直线l的参数方程为为参数). 由上式化简成t=2(x-1)代入下式得 根据ρ2=x2+y2,进行化简得C:x2+y2=1(2分) (2)∵代入C得∴(5分) 设椭圆的参数方程为参数)(7分) 则(9分) 则的最小值为-4.(10分)
复制答案
考点分析:
相关试题推荐
选修4-1:几何证明选讲
如图所示,PA为⊙O的切线,A为切点,PBC是过点O的割线,PA=10,PB=5,∠BAC的平分
线与BC和⊙O分别交于点D和E.
( I)求证:manfen5.com 满分网
( II)求AD•AE的值.

manfen5.com 满分网 查看答案
已知函数f(x)=manfen5.com 满分网-lnx,x∈[1,3],
(1)求f(x)的最大值与最小值;
(2)若f(x)<4-at于任意的x∈[1,3],t∈[0,2]恒成立,求实数a的取值范围.
查看答案
已知椭圆C:manfen5.com 满分网+manfen5.com 满分网=1(a>b>0)的离心率为manfen5.com 满分网,连接椭圆的四个顶点得到的菱形的面积为2manfen5.com 满分网
(1)求椭圆C的方程;
(2)若过点(2,0)的直线l的与椭圆C交于A、B两点,O为坐标原点,当∠AOB为锐角时,求直线l的斜率k的取值范围.
查看答案
如图,已知在四棱锥P-ABCD中,底面ABCD是边长为4的正方形,△PAD是正三角形,平面PAD⊥平面ABCD,E,F,G分别是PD,PC,BC的中点.
(1)求证:平面EFG⊥平面PAD;
(2)若M是线段CD上一点,求三棱锥M-EFG的体积.

manfen5.com 满分网 查看答案
为预防H1N1病毒爆发,某生物技术公司研制出一种新流感疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个流感样本分成三组,测试结果如下表:
分组A组B组C组
疫苗有效673ab
疫苗无效7790c
已知在全体样本中随机抽取1个,抽到B组疫苗有效的概率是0.33.
(I)现用分层抽样的方法在全体样本中抽取360个测试结果,问应在C组抽取样本多少个?
(II)已知b≥465,c≥30,求通过测试的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.