满分5 > 高中数学试题 >

在某学校组织的一次篮球总投篮训练中,规定每人最多投3次;在A处每投进一球得3分,...

在某学校组织的一次篮球总投篮训练中,规定每人最多投3次;在A处每投进一球得3分,在B处每投进一球得2分,如果前两次得分之和超过3分即停止投篮,否则投第3次.某同学在A处的命中率q1为0.25,在B处的命中率为q2.该同学选择先在A处投一球,以后都在B处投,用ξ表示该同学投篮的训练结束后所得的总分,其分布列为
ξ2345
P0.03P1P2P3P4
(1)求q2的值;
(2)求随机变量ξ的数学期望Eξ;
(3)试比较该同学选择在B处投篮得分超过3分与选择上述方式投篮得分超过3分的概率的大小.
(1)由题设知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”,由对立事件和相互独立事件性质,能求出q2. (2)分别求出p1=p(ξ=2),p2=p(ξ=3),p3=p(ξ=4),p4=p(ξ=5),由此能求出Eξ. (3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”,用D表示事件“该同学选择都在B处投,得分超过3分”,则P(C)=P(ξ=4)+P(ξ=5),P(D)=,由此能求出结果. 【解析】 (1)由题设知,“ξ=0”对应的事件为“在三次投篮中没有一次投中”, 由对立事件和相互独立事件性质, 知p(ξ=0)=(1-q1)(1-q2)2=0.03, ∵q1=0.25, ∴解得q2=0.8. (2)根据题意p1=p(ξ=2)=(1-q1)•(1-q2)q2=0.75×2×0.2×0.8=0.24, p2=p(ξ=3)==0.25×(1-0.8)2=0.01, p3=p(ξ=4)=(1-q1)=0.75×0.82=0.48, p4=p(ξ=5)=q1q2+q1(1-q2)q2=0.25×0.8+0.25×0.2×0.8=0.24, 因此Eξ=0×0.03+2×0.24+3×0.01+4×0.48+5×0.24=3.63. (3)用C表示事件“该同学选择第一次在A处投,以后都在B处投,得分超过3分”, 用D表示事件“该同学选择都在B处投,得分超过3分”, 则P(C)=P(ξ=4)+P(ξ=5)=P3+P4=0.48+0.24=0.72, P(D)==0.82+2×0.8×0.2×0.8=0.896, 故P(D)>P(C). 即该同学选择都在B处投篮得分超过3分的概率大于该同学选择第一次在A处投以后都在B处投得分超过3分的概率.
复制答案
考点分析:
相关试题推荐
第26届世界大学生夏季运动会将于2011年8月12日到23日在深圳举行,为了搞好接待工作,组委会在某学院招募了12名男志愿者和18名女志愿者.将这30名志愿者的身高编成如右所示的茎叶图(单位:cm):若身高在175cm以上(包括175cm)定义为“高个子”,身高在175cm以下(不包括175cm)定义为“非高个子”,且只有“女高个子”才担任“礼仪小姐”.
(1)如果用分层抽样的方法从“高个子”和“非高个子”中中提取5人,再从这5人中选2人,那么至少有一人是“高个子”的概率是多少?
(2)若从所有“高个子”中选3名志愿者,用ξ表示所选志愿者中能担任“礼仪小姐”的人数,试写出ξ的分布列,并求ξ的数学期望.

manfen5.com 满分网 查看答案
某会议室用3盏灯照明,每盏灯各使用节能灯棍一只,且型号相同.假定每盏灯能否正常照明只与灯棍的寿命有关,该型号的灯棍寿命为1年以上的概率为0.8,寿命为2年以上的概率为0.3,从使用之日起每满1年进行一次灯棍更换工作,只更换已坏的灯棍,平时不换.
(I)在第一次灯棍更换工作中,求不需要更换灯棍的概率;
(II)在第二次灯棍更换工作中,对其中的某一盏灯来说,求该灯需要更换灯棍的概率;
(III)设在第二次灯棍更换工作中,需要更换的灯棍数为ξ,求ξ的分布列和期望.
查看答案
袋中有2个红球,n个白球,各球除颜色外均相同.已知从袋中摸出2个球均为白球的概率为manfen5.com 满分网
(I)求n;
(II)从袋中不放回的依次摸出三个球,记ξ为相邻两次摸出的球不同色的次数(例如:若取出的球依次为红球、白球、白球,则ξ=1),求随机变量ξ的分布列及其数学期望Eξ.
查看答案
袋中装有大小相同的10个球,其中5个白球,3个红球,2个黑球,现在依次从中取出3个球.
(1)求取出的3个球不是同一种颜色的概率;
(2)求取出的3个球中所含红球的个数ξ的分布列及期望.
查看答案
某十字路口的红绿灯每次红灯亮30秒,绿灯亮55秒,黄灯亮5秒,当你走到该路口恰好遇到红灯的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.