满分5 > 高中数学试题 >

已知 p:f(x)=,且|f(a)|<2;q:集合A={x|x2+(a+2)x+...

已知 p:f(x)=manfen5.com 满分网,且|f(a)|<2;q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0}且A∩B=∅.
若p∨q为真命题,p∧q为假命题,求实数a的取值范围.
结合,解绝对值不等式|f(a)|<2,我们可以求出p为真时参数a的取值范围;根据集合交集的定义及一元二次方程根的分布与系数的关系,可以判断q为真时参数a的取值范围;进而根据p∨q为真命题,p∧q为假命题,即p,q一真一假,分类讨论后,综合讨论结果,即可得到答案. 【解析】 对p:所以. 若命题p为真,则有-5<a<7; 对q:∵B={x|x>0}且 A∩B=∅ ∴若命题q为真,则方程g(x)=x2+(a+2)x+1=0无解或只有非正根. ∴△=(a+2)2-4<0或,∴a>-4. ∵p,q中有且只有一个为真命题 ∴(1)p 真,q假:则有; (2)p 假,q 真:则有; ∴-5<a≤-4或a≥7.
复制答案
考点分析:
相关试题推荐
已知命题ax2+ax-2=0在[-1,1]上有解;命题q:只有一个实数x满足不等式x2+2ax+2a≤0,若命题“p”或“q”是假命题,求a的取值范围.
查看答案
已知集合A={-5,-4,0,6,7,9,11,12},X⊆A,定义S(x)为集合X中元素之和,求所有S(x)的和S.
查看答案
已知命题p:“∀x∈[1,2],x2-a≥0”,命题q:“∃x∈R,x2+2ax+2-a=0”,若命题“p且q”是真命题,求实数a的取值范围.
查看答案
有下列命题:
①命题“∃x∈R,使得x2+1>3x”的否定是“∀x∈R,都有x2+1≤3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③若p(x)=ax2+2x+1>0,则“∀x∈R,p(x)是真命题”的充要条件为 a>1;
④若函数f(x)为R上的奇函数,当x≥0,f(x)=3x+3x+a,则f(-2)=-14;
⑤不等式manfen5.com 满分网的解集是manfen5.com 满分网
其中所有正确的说法序号是    查看答案
已知集合A={x||x|<2},B={x|ln(x+1)>0},则A∩B=    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.