如图,多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,
,G为AD的中点.
(1)求证;AC⊥CE;
(2)在线段CE上找一点F,使得BF∥平面ACD,并给予证明;
(3)求三棱锥V
G-BCE的体积.
考点分析:
相关试题推荐
某高校在2012年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成
五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在90分以上(含90分)的学生为“优秀”,成绩小于90分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求“优秀”和“良好”学生的人数;
(2)如果用分层抽样的方法从“优秀”和“良好”的学生中选出10人,求“优秀”和“良好”的学生分别选出几人?
(3)若甲是在(2)选出的“优秀”学生中的一个,则从选出的“优秀”学生中再选2人参加某专项测试,求甲被选中的概
率是多少?
查看答案
如图所示,角A为钝角,且
,点P,Q分别在角A的两边上.
(1)已知AP=5,AQ=2,求PQ的长;
(2)设∠APQ=α,∠AQP=β,且
,求sin(2α+β)的值.
查看答案
如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过p点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=
cm.
查看答案
已知曲线C的参数方程为
(θ为参数),则曲线上C的点到直线3x-4y+4=0的距离的最大值为
.
查看答案
目标函数z=3x+y在约束条件
下取得的最大值是
.
查看答案