满分5 > 高中数学试题 >

已知椭圆过点且它的离心率为. (1)求椭圆C1的方程; (2)设椭圆C1的左焦点...

已知椭圆manfen5.com 满分网过点manfen5.com 满分网且它的离心率为manfen5.com 满分网
(1)求椭圆C1的方程;
(2)设椭圆C1的左焦点为F1,右焦点为F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M,求点M的轨迹C2的方程;
(3)已知动直线l过点Q(4,0),交轨迹C2于R、S两点.是否存在垂直于x轴的直线m被以RQ为直径的圆O1所截得的弦长恒为定值?如果存在,求出m的方程;如果不存在,说明理由.
(1)根据椭圆所过点A可求得b值,再由离心率及a2=b2+c2即可求得a值, (2)由题意可知|MP|=|MF2|,即动点M到定直线l1:x=-1的距离等于它到定点F2(1,0)的距离,从而可判断动点M的轨迹为抛物线,进而可求得其方程; (3)设R(x1,y1),假设存在直线m:x=t满足题意,可表示出圆O1的方程,过O1作直线x=t的垂线,垂足为E,设直线m与圆O1的一个交点为G.利用勾股定理可用t,x1表示出|EG|2,根据表达式可求得t值满足条件. 【解析】 (1)因为椭圆(a>b>0)过点,所以,b2=2, 又因为椭圆C1的离心率,所以,解得a2=3. 所以椭圆C1的方程是; (2)因为线段PF2的垂直平分线交l2于点M, 所以|MP|=|MF2|,即动点M到定直线l1:x=-1的距离等于它到定点F2(1,0)的距离, 所以动点M的轨迹C2是以l1为准线,F2为焦点的抛物线, 所以点M的轨迹C2的方程为y2=4x; (3)设R(x1,y1),假设存在直线m:x=t满足题意,则圆心, 过O1作直线x=t的垂线,垂足为E,设直线m与圆O1的一个交点为G. 可得:, 即 = =, 当t=3时,|EG|2=3,此时直线m被以RQ为直径的圆O1所截得的弦长恒为定值. 因此存在直线m:x=3满足题意.
复制答案
考点分析:
相关试题推荐
已知数列{an}的前n项和为Sn,且an是Sn与2的等差中项,而数列{bn}的首项为1,bn+1-bn-2=0.
(1)求a1和a2的值;
(2)求数列{an},{bn}的通项an和bn
(3)设cn=an•bn,求数列{cn}的前n项和Tn
查看答案
如图,多面体ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AB=CD=1,manfen5.com 满分网,G为AD的中点.
(1)求证;AC⊥CE;
(2)在线段CE上找一点F,使得BF∥平面ACD,并给予证明;
(3)求三棱锥VG-BCE的体积.

manfen5.com 满分网 查看答案
某高校在2012年的自主招生考试成绩中随机抽取40名学生的笔试成绩,按成绩共分成
五组:第1组[75,80),第2组[80,85),第3组[85,90),第4组[90,95),第5组[95,100],得到的频率分布直方图如图所示,同时规定成绩在90分以上(含90分)的学生为“优秀”,成绩小于90分的学生为“良好”,且只有成绩为“优秀”的学生才能获得面试资格.
(1)求“优秀”和“良好”学生的人数;
(2)如果用分层抽样的方法从“优秀”和“良好”的学生中选出10人,求“优秀”和“良好”的学生分别选出几人?
(3)若甲是在(2)选出的“优秀”学生中的一个,则从选出的“优秀”学生中再选2人参加某专项测试,求甲被选中的概
率是多少?

manfen5.com 满分网 查看答案
如图所示,角A为钝角,且manfen5.com 满分网,点P,Q分别在角A的两边上.
(1)已知AP=5,AQ=2,求PQ的长;
(2)设∠APQ=α,∠AQP=β,且manfen5.com 满分网,求sin(2α+β)的值.

manfen5.com 满分网 查看答案
manfen5.com 满分网如图,⊙O的直径AB=6cm,P是AB延长线上的一点,过p点作⊙O的切线,切点为C,连接AC,若∠CPA=30°,PC=    cm. 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.