(1)由,知f(x)图象的对称轴,从而可求得a值,由f(x)≥x即(x-1)2-(b+1)2≥0恒成立,可得-(b+1)2≥0,由此 可解得b值;
(2)由(1)知g(x)=log2(x2-2x),先求出函数g(x)的定义域,根据复合函数单调性的判断方法:同增异减,即可求得g(x)的增区间;
【解析】
(1)由,知f(x)图象的对称轴为x=,
所以-=,解得a=-2,
f(x)≥x,即x2-x-b2-2b≥x,
所以x2-2x-b2-2b≥0,即(x-1)2-(b+1)2≥0,
因为f(x)≥x恒成立,所以-(b+1)2≥0,所以b=-1,
所以y=f(x)=x2-x+1.
(2)由(1)知g(x)=log2(x2-2x),
由x2-2x>0解得x<0或x>2,所以函数g(x)的定义域为(-∞,0)∪(2,+∞),
因为y=log2t递增,t=x2-2x在(2,+∞)上递增,
所以g(x)在(2,+∞)上递增,即g(x)的递增区间为(2,+∞)上递增;