设集合s为非空实数集,若数η(ξ)满足:
(1)对∀x∈S,有x≤η(x≥ξ),即η(ξ)是S的上界(下界);
(2)对∀a<η(a>ξ),∃x
o∈S,使得x
o>a(x
o<a),即η(ξ)是S的最小(最大)上界(下界),则称数η(ξ)为数集S的上(下)确界,记作η=supS(ξ=infS).
给出如下命题:
①若 S={x|x
2<2},则 supS=-
;
②若S={x|x=n|,x∈N},则infS=l;
③若A、B皆为非空有界数集,定义数集A+B={z|z=x+y,x∈A,y∈B},则sup(A+B)=supA+supB.
其中正确的命题的序号为
(填上所有正确命题的序号).
查看答案