(1)利用直线与圆相切的性质、两圆相内切的性质及抛物线的定义即可得出;
(2)利用导数的几何意义、直线的点斜式、点到直线的距离公式即可得出.
【解析】
(1)设圆心P(x,y),∵圆P与直线y=-2相切,∴圆P的半径R=|y+2|.
又∵原P与定圆x2+(y-1)2=1内切,
∴|y+2|-1=}FP|,∴|y+1|=|FP|,
∴点P到定直线y=-1与到定点F(0,1)的距离相等,
∴点P的轨迹是抛物线x2=4y.即曲线E的方程为x2=4y.
(2)设斜率为的直线与曲线E相切于点M(x,y).
由曲线E的方程为x2=4y,∴,∴切线的斜率为,
∴,即,∴=8,
∴切点为.
∴切线方程为,化为.
∴原点到此切线的距离d==.