满分5 > 高中数学试题 >

命题“∀x∈R,x2+1≥1”的否定是( ) A.∀x∈R,x2+1<1 B.∃...

命题“∀x∈R,x2+1≥1”的否定是( )
A.∀x∈R,x2+1<1
B.∃x∈R,x2+1≤1
C.∃x∈R,x2+1<1
D.∃x∈R,x2+1≥1
全称命题:“∀x∈A,P(x)”的否定是特称命题:“∃x∈A,非P(x)”,结合已知中原命题“∀x∈R,都有有x2+1≥1”,易得到答案. 【解析】 ∵原命题“∀x∈R,有x2+1≥1” ∴命题“∀x∈R,有x2+1≥1”的否定是: ∃x∈R,使x2+1<1. 故选C.
复制答案
考点分析:
相关试题推荐
设i为虚数单位,则复数manfen5.com 满分网等于( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.manfen5.com 满分网
D.manfen5.com 满分网
查看答案
已知数列{an}和{bn}的通项公式分别为an=3n+6,bn=2n+7(n∈N*).将集合{x|x=an,n∈N*}∪{x|x=bn,n∈N*}中的元素从小到大依次排列,构成数列c1,c2,c3,…,cn,…
(1)写出c1,c2,c3,c4
(2)求证:在数列{cn}中,但不在数列{bn}中的项恰为a2,a4,…,a2n,…;
(3)求数列{cn}的通项公式.
查看答案
已知实数a,b,c成等差数列,a+1,b+1,c+4成等比数列,且a+b+c=15,求a,b,c
查看答案
是否存在常数a、b、c使等式1•(n2-12)+2(n2-22)+…+n(n2-n2)=an4+bn2+c对一切正整数n成立?证明你的结论.
查看答案
设f(x)=manfen5.com 满分网,方程f (x)=x有唯一解,数列{xn}满足f (x1)=1,xn+1=f (xn)(n∈N*).
(1)求数列{xn}的通项公式;
(2)已知数列{an}满足a1=manfen5.com 满分网,an+1=manfen5.com 满分网(2+an2-manfen5.com 满分网(n∈N*),求证:对一切n≥2的正整数都满足manfen5.com 满分网manfen5.com 满分网+manfen5.com 满分网+…+manfen5.com 满分网<2.
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.