(1)取BE的中点D,连接DF.说明∠A1EB为二面角A1-EF-B的平面角,证明二面角A1-EF-B为直二面角,证明A1E┴平面BEF,即可证明A1E⊥平面BEP;
(2)建立空间直角坐标系,求出,平面A1BP的法向量,利用,求直线A1E与平面A1BP所成角的大小.
【解析】
不妨设正三角形的边长为3.
(1)在图1中,取BE的中点D,连接DF.
∵,AF=AD=2,又∠A=60°,△ADF为正三角形.
又∵AE=ED=1,
∴EF┴AD,
∴在图2中有A1E┴EF,BE┴EF.
∴∠A1EB为二面角A1-EF-B的平面角.
∵二面角A1-EF-B为直二面角,
∴A1E┴BE
又∵BE∩EF=E,
∴即A1E┴平面BEF,即A1E┴平面BEP
(2)由(1)可知,A1E┴平面BEP,BE┴EF,建立坐标系则E(0,0,0),A1(0,0,1),(2,0,0),
F(0,,0),D(1,0,0),不难得出EF∥DP且EF=DP,DE∥EP且DE=FP.
故P点的坐标为(1,,0),
∴
设平面A1BP的法向量=(x,y,z),
则
∴.
∴
∴A1E与平面A1BP所成角的大小为.