满分5 > 高中数学试题 >

函数B1的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,...

函数B1的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=x+1(x∈R)是单函数.下列命题:
①函数f(x)=x2-2x(x∈R)是单函数;
②函数f(x)=manfen5.com 满分网是单函数;
③若y=f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);
④函数f(x)在定义域内某个区间D上具有单调性,则f(x)一定是单函数.
其中的真命题是    (写出所有真命题的编号).
根据已知中“单函数”的定义,可得函数f(x)为单函数时,对任意x1≠x2,均有f(x1)≠f(x2)成立,由此举出反例可判断①②,根据定义可判断③④,进而得到答案. 【解析】 ①中函数f(x)=x2-2x(x∈R),当x=0或x=2时,f(x)=0,故∃x1,x2∈A且f(x1)=f(x2)时,有x1≠x2,不满足“单函数”的定义; ②中函数f(x)=,当x=0或x=4时,f(x)=2,故∃x1,x2∈A且f(x1)=f(x2)时,有x1≠x2,不满足“单函数”的定义; ③由“单函数”的定义可得f(x1)=f(x2)时总有x1=x2,故其逆否命题:x1≠x2,则f(x1)≠f(x2)成立,故③为真命题 ④中函数f(x)在定义域内某个区间D上具有单调性,但在整个定义域上有增有减时,可能会存在x1≠x2,使x1≠x2,从而不满足“单函数”的定义; 综上真命题只有③ 故答案为:③
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xoy中,设抛物线y2=4x的焦点为F,准线为l,P为抛物线上一点,PA⊥l,A为垂足.如果直线AF的倾斜角为120°,那么|PF|=    查看答案
已知定义域为R的偶函数f(x)在(-∞,0]上是减函数,且f(manfen5.com 满分网)=2,则不等式f(2x)>2的解集为    查看答案
如图是根据50个城市某年6月份的平均气温(单位:℃)数据得到的样本频率分布直方图,其中平均气温的范围是[20.5,26.5],样本数据的分组为[20.5,21.5),[21.5,22.5),[22.5,23.5),[23.5,24.5),[25.5,26.5],由图中数据可知a=    ;样本中平均气温不低于23.5℃的城市个数为   
manfen5.com 满分网 查看答案
在△ABC中,若b=4,cosB=-manfen5.com 满分网,sinA=manfen5.com 满分网,则a=    ,c=    查看答案
执行如图所示的程序框图,输出的C值为   
manfen5.com 满分网 查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.