满分5 > 高中数学试题 >

已知函数f(x)=lnx-kx+1. (1)求函数f(x)的单调区间; (2)若...

已知函数f(x)=lnx-kx+1.
(1)求函数f(x)的单调区间;
(2)若f(x)≤0恒成立,试确定实数k的取值范围;
(3)证明:manfen5.com 满分网(n∈N+,n>1).
(1)由函数f(x)的定义域为(0,+∞),.能求出函数f(x)的单调区间. (2)由(1)知k≤0时,f(x)在(0,+∞)上是增函数,而f(1)=1-k>0,f(x)≤0不成立,故k>0,又由(1)知f(x)的最大值为f(),由此能确定实数k的取值范围. (3)由(2)知,当k=1时,有f(x)≤0在(0,+∞)恒成立,且f(x)在(1,+∞)上是减函数,f(1)=0,即lnx<x-1在x∈[2,+∞)上恒成立,由此能够证明(n∈N+,n>1). 【解析】 (1)函数f(x)的定义域为(0,+∞),. 当k≤0时,, f(x)在(0,+∞)上是增函数; 当k>0时,若x∈时,有, 若x∈时,有, 则f(x)在(0,)上是增函数,在()上是减函数. (2)由(1)知k≤0时,f(x)在(0,+∞)上是增函数, 而f(1)=1-k>0,f(x)≤0不成立,故k>0, 又由(1)知f(x)的最大值为f(),要使f(x)≤0恒成立, 则f()≤0即可.,即-lnk≤0,得k≥1. (3)由(2)知,当k=1时, 有f(x)≤0在(0,+∞)恒成立, 且f(x)在(1,+∞)上是减函数,f(1)=0, 即lnx<x-1在x∈[2,+∞)上恒成立, 令x=n2,则lnn2<n2-1, 即2lnn<(n-1)(n+1),从而, ∴(n∈N+,n>1).
复制答案
考点分析:
相关试题推荐
已知函数f(x)=manfen5.com 满分网
(1)求f(x)的单调区间;
(2)若a>0,x1+x2>0,x2+x3>0,x3+x1>0,|xi|>manfen5.com 满分网(i=1,2,3).求证:f(x1)+f(x2)+f(x3)>2manfen5.com 满分网
查看答案
三棱锥P-ABC中,PA⊥平面ABC,AB⊥BC,
(1)证明:平面PAB⊥平面PBC;
(2)若PA=manfen5.com 满分网,PC与侧面APB所成角的余弦值为manfen5.com 满分网,PB与底面ABC成60°角,求二面角B-PC-A的大小.

manfen5.com 满分网 查看答案
我校开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响,已知某学生选修甲而不选修乙和丙的概率为0.08,选修甲和乙而不选修丙的概率为0.12,至少选修一门的概率为0.88,用ξ表示该学生选修课程门数和没选修门数的乘积.
(1)记“ξ=0”为事件A,求事件A的概率;
(2)求ξ的分布列与数学期望.
查看答案
在锐角△ABC中,三个内角A,B,C所对的边依次为a,b,c,设manfen5.com 满分网=(sin(manfen5.com 满分网-A),1),manfen5.com 满分网=(2sin(manfen5.com 满分网+1),-1),a=2manfen5.com 满分网,且manfen5.com 满分网manfen5.com 满分网=-manfen5.com 满分网
(1)若b=2manfen5.com 满分网,求△ABC的面积;
(2)求b+c的最大值.
查看答案
若对于定义在R上的函数f(x),其图象是连续不断的,且存在常数λ(λ∈R)使得f(x+λ)+λf(x)=0对任意实数x都成立,则称f(x) 是一个“λ-伴随函数”.有下列关于“λ-伴随函数”的结论:
①f(x)=0 是常数函数中唯一个“λ-伴随函数”;
②f(x)=x不是“λ-伴随函数”;
③f(x)=x2是一个“λ-伴随函数”; 
④“manfen5.com 满分网-伴随函数”至少有一个零点.
其中不正确的序号是    (填上所有不正确的结论序号). 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.