满分5 > 高中数学试题 >

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,...

如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网
(I)由已知中DE⊥平面ABCD,ABCD是边长为3的正方形,我们可得DE⊥AC,AC⊥BD,结合线面垂直的判定定理可得AC⊥平面BDE; (Ⅱ)以D为坐标原点,DA,DC,DE方向为x,y,z轴正方向,建立空间直角坐标系,分别求出平面BEF和平面BDE的法向量,代入向量夹角公式,即可求出二面角F-BE-D的余弦值; (Ⅲ)由已知中M是线段BD上一个动点,设M(t,t,0).根据AM∥平面BEF,则直线AM的方向向量与平面BEF法向量垂直,数量积为0,构造关于t的方程,解方程,即可确定M点的位置. 证明:(Ⅰ)因为DE⊥平面ABCD,所以DE⊥AC. 因为ABCD是正方形,所以AC⊥BD, 从而AC⊥平面BDE.…(4分) 【解析】 (Ⅱ)因为DA,DC,DE两两垂直,所以建立空间直角坐标系D-xyz如图所示. 因为BE与平面ABCD所成角为60,即∠DBE=60°, 所以. 由AD=3,可知,. 则A(3,0,0),,,B(3,3,0),C(0,3,0), 所以,. 设平面BEF的法向量为n=(x,y,z),则,即. 令,则n=. 因为AC⊥平面BDE,所以为平面BDE的法向量,. 所以. 因为二面角为锐角,所以二面角F-BE-D的余弦值为.…(8分) (Ⅲ)点M是线段BD上一个动点,设M(t,t,0). 则. 因为AM∥平面BEF, 所以=0,即4(t-3)+2t=0,解得t=2. 此时,点M坐标为(2,2,0), 即当时,AM∥平面BEF.…(12分)
复制答案
考点分析:
相关试题推荐
某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)频数(人数)频率
[60,70)0.16
[70,80)22
[80,90)140.28
[90,100)
合计501
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.
查看答案
已知△ABC的三个内角A,B,C所对的边分别为a,b,c.manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求A的大小;
(Ⅱ)若a=1,manfen5.com 满分网.求S△ABC
查看答案
对于三次函数f(x)=ax3+bx2+cx+d,定义y=f″(x)是函数y=f′(x)的导函数.若方程f″(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+3x+manfen5.com 满分网+manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网…+manfen5.com 满分网的值为    查看答案
已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为    查看答案
在体积为V的三棱锥S-ABC的棱AB上任取一点P,则三棱锥P-SBC的体积大于manfen5.com 满分网的概率是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.