满分5 > 高中数学试题 >

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Sn是和an...

设数列{an}的各项都为正数,其前n项和为Sn,已知对任意n∈N*,Snmanfen5.com 满分网和an的等差中项.
(Ⅰ)证明数列{an}为等差数列,并求数列{an}的通项公式;
(Ⅱ)证明manfen5.com 满分网
(Ⅰ)由Sn是和an的等差中项,知2Sn=,且an>0,由此能够证明数列{an}为等差数列,并能求出数列{an}的通项公式. (Ⅱ)由an=n,则,故=2(),由此能够证明. 【解析】 (Ⅰ)∵Sn是和an的等差中项, ∴2Sn=,且an>0, 当n=1时,2a1=+a1,解得a1=1, 当n≥2时,有2Sn-1=+an-1, ∴2Sn-2Sn-1=, 即, ∴=an+an-1, 即(an+an-1)(an-an-1)=an+an-1, ∵an+an-1>0, ∴an-an-1=1,n≥2, ∴数列{an}是首项为1,公差为1的等差数列,且an=n. (Ⅱ)∵an=n, 则, ∴=2(), ∴ =2[(1-)+()+…+()] =2(1-)<2. ∴.
复制答案
考点分析:
相关试题推荐
如图,ABCD是边长为3的正方形,DE⊥平面ABCD,AF∥DE,DE=3AF,BE与平面ABCD所成角为60°.
(Ⅰ)求证:AC⊥平面BDE;
(Ⅱ)求二面角F-BE-D的余弦值;
(Ⅲ)设点M是线段BD上一个动点,试确定点M的位置,使得AM∥平面BEF,并证明你的结论.

manfen5.com 满分网 查看答案
某班级举行一次知识竞赛活动,活动分为初赛和决赛两个阶段、现将初赛答卷成绩(得分均为整数,满分为100分)进行统计,制成如下频率分布表.
分数(分数段)频数(人数)频率
[60,70)0.16
[70,80)22
[80,90)140.28
[90,100)
合计501
(1)填充频率分布表中的空格(在解答中直接写出对应空格序号的答案);
(2)决赛规则如下:参加决赛的每位同学依次口答4道小题,答对2道题就终止答题,并获得一等奖.如果前三道题都答错,就不再答第四题.某同学进入决赛,每道题答对的概率P的值恰好与频率分布表中不少于80分的频率的值相同.
①求该同学恰好答满4道题而获得一等奖的概率;
②记该同学决赛中答题个数为X,求X的分布列及数学期望.
查看答案
已知△ABC的三个内角A,B,C所对的边分别为a,b,c.manfen5.com 满分网manfen5.com 满分网,且manfen5.com 满分网
(Ⅰ)求A的大小;
(Ⅱ)若a=1,manfen5.com 满分网.求S△ABC
查看答案
对于三次函数f(x)=ax3+bx2+cx+d,定义y=f″(x)是函数y=f′(x)的导函数.若方程f″(x)=0有实数解x,则称点(x,f(x))为函数y=f(x)的“拐点”.有同学发现:任何一个三次函数既有拐点,又有对称中心,且拐点就是对称中心.根据这一发现,对于函数g(x)=manfen5.com 满分网x3-manfen5.com 满分网x2+3x+manfen5.com 满分网+manfen5.com 满分网,则manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网…+manfen5.com 满分网的值为    查看答案
已知P是直线3x+4y+8=0上的动点,PA,PB是圆x2+y2-2x-2y+1=0的两条切线,A,B是切点,C是圆心,那么四边形PACB面积的最小值为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.