满分5 > 高中数学试题 >

如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=...

manfen5.com 满分网如图,四棱锥P-ABCD中,PD⊥平面ABCD,底面ABCD为矩形,PD=DC=4,AD=2,E为PC的中点.
(Ⅰ)求证:AD⊥PC;
(Ⅱ)求三棱锥A-PDE的体积;
(Ⅲ)AC边上是否存在一点M,使得PA∥平面EDM,若存在,求出AM的长;若不存在,请说明理由.
(Ⅰ)要证AD⊥PC,先证AD⊥面PDC,就是从线面垂直进而推证线线垂直. (Ⅱ)求三棱锥A-PDE的体积,先求底面PDE的面积,然后求解. (Ⅲ)PA∥平面EDM,只要PA∥EM即可,找出再证明求解即可. 【解析】 (Ⅰ)证明:因为PD⊥平面ABCD, 所以PD⊥AD.(2分) 又因为ABCD是矩形, 所以AD⊥CD.(3分) 因为PD∩CD=D, 所以AD⊥平面PCD. 又因为PC⊂平面PCD, 所以AD⊥PC.(5分) (Ⅱ)【解析】 因为AD⊥平面PCD, 所以AD是三棱锥A-PDE的高. 因为E为PC的中点,且PD=DC=4, 所以.(7分) 又AD=2, 所以.(9分) (Ⅲ)【解析】 取AC中点M,连接EM,DM, 因为E为PC的中点,M是AC的中点, 所以EM∥PA. 又因为EM⊂平面EDM,PA⊄平面EDM, 所以PA∥平面EDM.(12分) 所以. 即在AC边上存在一点M,使得PA∥平面EDM,AM的长为.(14分)
复制答案
考点分析:
相关试题推荐
如图,在四面体ABCD中,CB=CD,AD⊥BD,点E,F分别是AB,BD的中点.
(Ⅰ)求证:平面EFC⊥平面BCD;
(Ⅱ)若平面ABD⊥平面BCD,且AD=BD=BC=1,求三棱锥B-ADC的体积.

manfen5.com 满分网 查看答案
如图,在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,M为AB的中点.
(1)求证:BC∥平面PMD;
(2)求证:PC⊥BC;
(3)求点A到平面PBC的距离.

manfen5.com 满分网 查看答案
如图所示,在直三棱柱ABC-A1B1C1中,AB=BB1=BC,AC1⊥平面A1BD,D为AC的中点.
(1)求证:B1C∥平面A1BD;
(2)求证:B1C1⊥平面ABB1A1
(3)在CC1上是否存在一点E,使得∠BA1E=45°,若存在,试确定E的位置,并判断平面A1BD与平面BDE是否垂直?若不存在,请说明理由.

manfen5.com 满分网 查看答案
已知A(-1,0),B(2,1),C(1,-1).若将坐标平面沿x轴折成直二面角,则折后∠BAC的余弦值为    查看答案
棱长为1的正方体ABCD-A1B1C1D1中,A1C1到面ABCD的距离为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.