满分5 > 高中数学试题 >

设函数. (Ⅰ)当时,求f(x)的最大值; (Ⅱ)令,(0<x≤3),其图象上任...

设函数manfen5.com 满分网
(Ⅰ)当manfen5.com 满分网时,求f(x)的最大值;
(Ⅱ)令manfen5.com 满分网,(0<x≤3),其图象上任意一点P(x,y)处切线的斜率k≤manfen5.com 满分网恒成立,求实数a的取值范围;
(Ⅲ)当a=0,b=-1,方程2mf(x)=x2有唯一实数解,求正数m的值.
(I)函数的定义域是(0,+∞),把代入函数解析式,求其导数,根据求解目标,这个导数在函数定义域内只有一个等于零的点,判断这唯一的极值点是极大值点即可; (II)即函数F(x)的导数在(0,3]小于或者等于恒成立,分离参数后转化为函数的最值; (III)研究函数是单调性得到函数的极值点,根据函数图象的变化趋势,判断何时方程2mf(x)=x2有唯一实数解,得到m所满足的方程,解方程求解m. 【解析】 (I)依题意,知f(x)的定义域为(0,+∞),当时,,(2′) 令f'(x)=0,解得x=1.(∵x>0) 因为g(x)=0有唯一解,所以g(x2)=0,当0<x<1时,f'(x)>0,此时f(x)单调递增; 当x>1时,f'(x)<0,此时f(x)单调递减. 所以f(x)的极大值为,此即为最大值…(4分) (II),x∈(0,3],则有≤,在x∈(0,3]上恒成立, 所以a≥,x∈(0,3], 当x=1时,取得最大值, 所以a≥…(8分) (III)因为方程2mf(x)=x2有唯一实数解,所以x2-2mlnx-2mx=0有唯一实数解, 设g(x)=x2-2mlnx-2mx,则. 令g'(x)=0,x2-mx-m=0.因为m>0,x>0, 所以(舍去),, 当x∈(0,x2)时,g'(x)<0,g(x)在(0,x2)上单调递减, 当x∈(x2,+∞)时,g'(x)>0,g(x)在(x2,+∞)单调递增 当x=x2时,g'(x2)=0,g(x)取最小值g(x2).(12′) 则既 所以2mlnx2+mx2-m=0,因为m>0,所以2lnx2+x2-1=0(*) 设函数h(x)=2lnx+x-1,因为当x>0时,h(x)是增函数,所以h(x)=0至多有一解. 因为h(1)=0,所以方程(*)的解为x2=1,即,解得.…(12分)
复制答案
考点分析:
相关试题推荐
给定椭圆manfen5.com 满分网,称圆心在原点O,半径为manfen5.com 满分网的圆是椭圆C的“准圆”.若椭圆C的一个焦点为manfen5.com 满分网,其短轴上的一个端点到F的距离为manfen5.com 满分网
(I)求椭圆C的方程和其“准圆”方程.(II)点P是椭圆C的“准圆”上的一个动点,过点P作直线l1,l2,使得l1,l2与椭圆C都只有一个交点,且l1,l2分别交其“准圆”于点M,N.
①当P为“准圆”与y轴正半轴的交点时,求l1,l2的方程;
②求证:|MN|为定值.
查看答案
已知椭圆manfen5.com 满分网(a>b>0)经过点M(1,manfen5.com 满分网),且其右焦点与抛物线manfen5.com 满分网的焦点F重合.
①求椭圆C1的方程;
②直线l经过点F与椭圆C1相交于A、B两点,与抛物线C2相交于C、D两点.求manfen5.com 满分网的最大值.
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中AD∥BC,PD⊥平面ABCD,AD=1,manfen5.com 满分网,BC=4.
(Ⅰ)求证:BD⊥PC;
(Ⅱ)求直线AB与平面PDC所成的角;
(Ⅲ)设点E在棱PC上,manfen5.com 满分网,若DE∥平面PAB,求λ的值.

manfen5.com 满分网 查看答案
已知α为锐角,且manfen5.com 满分网,函数manfen5.com 满分网,数列{an}的首项a1=1,an+1=f(an).
(1)求函数f(x)的表达式;
(2)求证:数列{an+1}为等比数列;
(3)求数列{an}的前n项和Sn
查看答案
对某校高三年级学生参加社区服务次数进行统计,随机抽取M名学生作为样本,得到这M名学生参加社区服务的次数.根据此数据作出了频数与频率的统计表和频率分布直方图如下:
分组频数频率
[10,15)100.25
[15,20)24n
[20,25)mp
[25,30)20.05
合计M1
(Ⅰ)求出表中M,p及图中a的值;
(Ⅱ)若该校高三学生有240人,试估计该校高三学生参加社区服务的次数在区间[10,15)内的人数;
(Ⅲ)在所取样本中,从参加社区服务的次数不少于20次的学生中任选2人,求至多一人参加社区服务次数在区间[25,30)内的概率.

manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.