根据新定义A(x1,y1)、B(x2,y2)之间的“距离”:‖AB‖=+,对①②③逐个分析即可判断其正误.
【解析】
①,不妨设直线AB的方程为y=kx+b(k>0),令x2>x>x1,
∵点C(x,y)在线段AB上,
∴‖AC‖=+=(k+1)(x-x1);
同理可得,‖CB‖=(k+1)(x2-x),‖AB‖=(k+1)(x2-x1);
∵‖AC‖+‖CB‖=(k+1)(x-x1)+(k+1)(x2-x)=(k+1)(x2-x1)=‖AB‖;
故①正确;
②,∵在△ABC中,若∠C=90°,取C(1,1),A(3,2),则B在直线x+y=3上,不妨取B(0,3),
‖CA‖=|3-1|+|2-1|=2+1=3,‖CB‖=|0-1|+|3-1|=1+2=3,‖AB‖=|3-0|+|2-3|=4,
显然,‖AC‖+‖CB‖≠‖AB‖;故②错误;
③,取C(0,0),A(1,0),B(0,1),则‖AC‖+‖CB‖=‖AB‖=2,故③错误.
综上所述,其中真命题的个数为1.
故选B.