已知点
是离心率为
的椭圆C:
上的一点.斜率为
的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
考点分析:
相关试题推荐
已知函数f(x)=x
2-8lnx,g(x)=-x
2+14x.
(Ⅰ)若函数y=f(x)和函数y=g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围;
(Ⅱ)若方程f(x)=g(x)+m有唯一解,求实数m的值.
查看答案
口袋里装有4个大小相同的小球,其中两个标有数字1,两个标有数字2.
(Ⅰ) 第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为ξ.当ξ为何值时,其发生的概率最大?说明理由;
(Ⅱ) 第一次从口袋里任意取一球,不再放回口袋里,第二次再任意取一球,记第一次与第二次取到小球上的数字之和为η.求η大于2的概率.
查看答案
如图,已知直三棱柱ABC-A
1B
1C
1,∠ACB=90°,AC=BC=2,AA
1=4,E、F分别是棱CC
1、AB中点.
(1)判断直线CF和平面AEB
1的位置关系,并加以证明;
(2)求四棱锥A-ECBB
1的体积.
查看答案
等比数列{a
n}的各项均为正数,且2a
1+3a
2=1,a
32=9a
2a
6,
(Ⅰ)求数列{a
n}的通项公式;
(Ⅱ)设b
n=log
3a
1+log
3a
2+…+log
3a
n,求数列{
}的前n项和.
查看答案
在△ABC中,角A、B、C所对的边分别为a、b、c,且
,当tan(A-B)取最大值时,角C的值为
.
查看答案