满分5 > 高中数学试题 >

选修4-5:不等式选讲 设函数f(x)=|x-1|+|x-a|(a∈R) (1)...

选修4-5:不等式选讲
设函数f(x)=|x-1|+|x-a|(a∈R)
(1)当a=4时,求不等式f(x)≥5的解集;
(2)若f(x)≥4对x∈R恒成立,求a的取值范围.
(Ⅰ)不等式即|x-1|+|x-4|≥5,等价于,或 ,或 ,分别求出每个不等式组的解集,再取并集即得所求. (Ⅱ)因为f(x)=|x-1|+|x-a|≥|a-1|,由题意可得|a-1|≥4,与偶此解得 a的值. 【解析】 (Ⅰ)当a=4时,不等式f(x)≥5,即|x-1|+|x-4|≥5,等价于 ,,或 ,或 . 解得:x≤0或 x≥5. 故不等式f(x)≥5的解集为 {x|x≤0,或 x≥5 }. …(5分) (Ⅱ)因为f(x)=|x-1|+|x-a|≥|(x-1)-(x-a)|=|a-1|.(当x=1时等号成立) 所以:f(x)min=|a-1|.…(8分) 由题意得:|a-1|≥4,解得  a≤-3,或a≥5. …(10分)
复制答案
考点分析:
相关试题推荐
在平面直角坐标系xoy中,曲线C1的参数方程为 manfen5.com 满分网(a>b>0,ϕ为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2是圆心在极轴上,且经过极点的圆.已知曲线C1上的点M(1,manfen5.com 满分网)对应的参数φ=manfen5.com 满分网,曲线C2过点D(1,manfen5.com 满分网).
(I)求曲线C1,C2的直角坐标方程;
(II)若点A( ρ 1,θ ),B( ρ 2,θ+manfen5.com 满分网) 在曲线C1上,求manfen5.com 满分网的值.
查看答案
manfen5.com 满分网如图,A,B,C,D四点在同一圆上,BC与AD的延长线交于点E,点F在BA的延长线上.
(Ⅰ)若manfen5.com 满分网,求manfen5.com 满分网的值;
(Ⅱ)若EF2=FA•FB,证明:EF∥CD.
查看答案
已知点manfen5.com 满分网是离心率为manfen5.com 满分网的椭圆C:manfen5.com 满分网上的一点.斜率为manfen5.com 满分网的直线BD交椭圆C于B、D两点,且A、B、D三点不重合.
(Ⅰ)求椭圆C的方程;
(Ⅱ)△ABD的面积是否存在最大值?若存在,求出这个最大值;若不存在,请说明理由?
查看答案
已知函数f(x)=x2-8lnx,g(x)=-x2+14x.
(Ⅰ)若函数y=f(x)和函数y=g(x)在区间(a,a+1)上均为增函数,求实数a的取值范围;
(Ⅱ)若方程f(x)=g(x)+m有唯一解,求实数m的值.
查看答案
口袋里装有4个大小相同的小球,其中两个标有数字1,两个标有数字2.
(Ⅰ) 第一次从口袋里任意取一球,放回口袋里后第二次再任意取一球,记第一次与第二次取到小球上的数字之和为ξ.当ξ为何值时,其发生的概率最大?说明理由;
(Ⅱ) 第一次从口袋里任意取一球,不再放回口袋里,第二次再任意取一球,记第一次与第二次取到小球上的数字之和为η.求η大于2的概率.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.