满分5 > 高中数学试题 >

如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,...

如图,在四棱锥S-ABCD中,底面ABCD是正方形,其他四个侧面都是等边三角形,AC与BD的交点为O,E为侧棱SC上一点.
(Ⅰ)当E为侧棱SC的中点时,求证:SA∥平面BDE;
(Ⅱ)求证:平面BDE⊥平面SAC;
(Ⅲ)(理科)当二面角E-BD-C的大小为45°时,试判断点E在SC上的位置,并说明理由.

manfen5.com 满分网
(I)做出辅助线,连接OE,由条件可得SA∥OE.根据因为SA⊈平面BDE,OE⊂平面BDE,得到SA∥平面BDE. (II)建立坐标系,写出要用的点的坐标,写出要用的向量的坐标,设出平面的法向量,根据法向量与平面上的向量垂直,写出一个法向量,根据两个法向量垂直证明两个平面垂直. (III)本题是一个一个二面角为条件,写出点的位置,做法同求两个平面的夹角一样,设出求出法向量,根据两个向量的夹角得到点要满足的条件,求出点的位置. 【解析】 (Ⅰ)证明:连接OE,由条件可得SA∥OE. 因为SA⊈平面BDE,OE⊂平面BDE,所以SA∥平面BDE. (Ⅱ)证明:由(Ⅰ)知SO⊥面ABCD,AC⊥BD.建立如图所示的空间直角坐标系. 设四棱锥S-ABCD的底面边长为2, 则O(0,0,0),S(0,0,),A(,0,0), B(0,,0),C(-,0,0),D(0,-,0). 所以=(-20,0),=(0,,0). 设CE=a(0<a<2),由已知可求得∠ECO=45°. 所以E(-+a,0,a),=(-+,-,). 设平面BDE法向量为n=(x,y,z),则即 令z=1,得n=(,0,1).易知=(0,,0)是平面SAC的法向量. 因为n•=(,0,1)•(0,-,0)=0,所以n⊥,所以平面BDE⊥平面SAC.(8分) (Ⅲ)设CE=a(0<a<2),由(Ⅱ)可知,平面BDE法向量为n=(,0,1).因为SO⊥底面ABCD, 所以=(0,0,)是平面SAC的一个法向量.由已知二面角E-BD-C的大小为45°. 所以|cos(,n)|=cos45°=,所以,解得a=1. 所以点E是SC的中点.
复制答案
考点分析:
相关试题推荐
有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,
得到如下的列联表:
优秀非优秀总计
甲班10
乙班30
合计105
已知在全部105人中抽到随机抽取1人为优秀的概率为manfen5.com 满分网
(Ⅰ)请完成上面的列联表;
(Ⅱ)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”;
(Ⅲ)若按下面的方法从甲班优秀的学生抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到6或10号的概率.
查看答案
在△ABC中,角A、B、C的对边分别为a、b、c,若manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网manfen5.com 满分网=1.
(Ⅰ)求证:A=B;
(Ⅱ)求边长c的值;
(Ⅲ)若|manfen5.com 满分网+manfen5.com 满分网|=manfen5.com 满分网,求△ABC的面积.
查看答案
在数列{an}中,若点(n,an)在经过点(5,3)的定直线l上,则数列{an}的前9项和S9=    查看答案
某时段内共有100辆汽车经过某一雷达地区,时速频率分布直方图如图所示,则时速超过60km/h的汽车数量为    辆.
manfen5.com 满分网 查看答案
已知(1+2x)n的展开式中,所有项的系数之和等于81,那么这个展开式中x3的系数是    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.