满分5 > 高中数学试题 >

已知函数f(x)=ex-kx, (1)若k=e,试确定函数f(x)的单调区间; ...

已知函数f(x)=ex-kx,
(1)若k=e,试确定函数f(x)的单调区间;
(2)若k>0,且对于任意x∈R,f(|x|)>0恒成立,试确定实数k的取值范围;
(3)设函数F(x)=f(x)+f(-x),求证:F(1)F(2)…F(n)>manfen5.com 满分网(n∈N+).
(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0,f′(x)<0 (2)f(|x|)是偶函数,只需研究f(x)>0对任意x≥0成立即可,即当x≥0时f(x)min>0 (3)观察结论,要证F(1)F(2)…F(n)>,即证[F(1)F(2)…F(n)]2>(en+1+2)n,变形可得[F(1)F(n)][F(2)F(n-1)]…[F(n)F(1)]>(en+1+2)n,可证F(1)F(n)>en+1+2,F(2)F(n-1)>en+1+2,F(n)F(1)>en+1+2.问题得以解决. 【解析】 (Ⅰ)由k=e得f(x)=ex-ex,所以f'(x)=ex-e. 由f'(x)>0得x>1,故f(x)的单调递增区间是(1,+∞), 由f'(x)<0得x<1,故f(x)的单调递减区间是(-∞,1). (Ⅱ)由f(|-x|)=f(|x|)可知f(|x|)是偶函数. 于是f(|x|)>0对任意x∈R成立等价于f(x)>0对任意x≥0成立. 由f'(x)=ex-k=0得x=lnk. ①当k∈(0,1]时,f'(x)=ex-k>1-k≥0(x>0). 此时f(x)在[0,+∞)上单调递增. 故f(x)≥f(0)=1>0,符合题意. ②当k∈(1,+∞)时,lnk>0. 当x变化时f'(x),f(x)的变化情况如下表: x (0,lnk) lnk (lnk,+∞) f′(x) - + f(x) 单调递减 极小值 单调递增 由此可得,在[0,+∞)上,f(x)≥f(lnk)=k-klnk. 依题意,k-klnk>0,又k>1,∴1<k<e. 综合①,②得,实数k的取值范围是0<k<e. (Ⅲ)∵F(x)=f(x)+f(-x)=ex+e-x,∴F(x1)F(x2)=, ∴F(1)F(n)>en+1+2,F(2)F(n-1)>en+1+2,F(n)F(1)>en+1+2. 由此得,[F(1)F(2)F(n)]2=[F(1)F(n)][F(2)F(n-1)][F(n)F(1)]>(en+1+2)n 故,n∈N*.
复制答案
考点分析:
相关试题推荐
抛物线y2=2px的准线的方程为x=-2,该抛物线上的每个点到准线x=-2的距离都与到定点N的距离相等,圆N是以N为圆心,同时与直线l1:y=x和l2:y=-x相切的圆.
(1)求定点N的坐标; 
(2)是否存在一条直线l同时满足下列条件:
①l分别与直线l1和l2交于A、B两点,且AB中点为E(4,1);
②l被圆N截得的弦长为2.
查看答案
甲、乙两人进行射击比赛,在一轮比赛中,甲、乙各射击一发子弹.根据以往资料知,甲击中8环,9环,10环的概率分别为0.6,0.3,0.1,乙击中8环,9环,10环的概率分别为0.4,0.4,0.2.
设甲、乙的射击相互独立.
(Ⅰ)求在一轮比赛中甲击中的环数多于乙击中环数的概率;
(Ⅱ)求在独立的三轮比赛中,至少有两轮甲击中的环数多于乙击中环数的概率.
查看答案
manfen5.com 满分网如图组合体中,三棱柱ABC-A1B1C1的侧面ABB1A1是圆柱的轴截面,C是圆柱底面圆周上不与A,B重合一个点.
(1)求证:无论点C如何运动,平面A1BC⊥平面A1AC;
(2)当C是弧AB的中点时,求四棱锥A1-BCC1B1与圆柱的体积比.
查看答案
某电视台为建国60周年阅兵仪式播放两套宣传片,其中宣传片甲播映时间为3分30秒,广告时间为30秒,收视观众为60万;宣传片乙播映时间为1分钟,广告时间为1分钟,收视观众为20万.广告公司规定每周至少有3.5分钟广告,而电视台每周只能为该栏目宣传片提供不多于16分钟的节目时间.电视台每周应播映两套宣传片各多少次,才能使得收视观众最多?
查看答案
在△ABC中,角A、B、C所对边分别为a,b,c,已知manfen5.com 满分网,且最长边的边长为l,
求:
(1)角C的大小;
(2)△ABC最短边的长.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.