满分5 > 高中数学试题 >

已知椭圆的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其...

已知椭圆manfen5.com 满分网的左焦点为F,左、右顶点分别为A、C,上顶点为B.过F、B、C作⊙P,其中圆心P的坐标为(m,n).
(1)当m+n>0时,求椭圆离心率的范围;
(2)直线AB与⊙P能否相切?证明你的结论.
(1)先求F、B、C的坐标,求直线FC、BC的中垂线方程,解出P的坐标,m+n>0,得到a、b、c关系,求出e的范围. (2)直线AB与⊙P能相切,则切点为B,求出AB和PB的斜率,如果垂直,斜率之积为-1,判断即可. 【解析】 (1)设F、B、C的坐标分别为(-c,0),(0,b),(1,0),则FC、BC的中垂线分别为 x=, y-.联列方程组, 解出 ∴, 即b-bc+b2-c>0,即(1+b)(b-c)>0, ∴b>c. 从而b2>c2即有a2>2c2, ∴.又 e>0, ∴. (2)直线AB与⊙P不能相切.由kAB=b,. 如果直线AB与⊙P相切,则  b•=-1. 解出c=0或2,与0<c<1矛盾, 所以直线AB与⊙P不能相切.
复制答案
考点分析:
相关试题推荐
设x轴、y轴正方向上的单位向量分别是manfen5.com 满分网manfen5.com 满分网,坐标平面上点An、Bn(n∈N*)分别满足下列两个条件:
manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网+manfen5.com 满分网;②manfen5.com 满分网manfen5.com 满分网=manfen5.com 满分网
(1)求manfen5.com 满分网manfen5.com 满分网的坐标;
(2)若四边形AnBnBn+1An+1的面积是an,求an(n∈N*)的表达式;
(3)对于(2)中的an,是否存在最小的自然数M,对一切(n∈N*)都有an<M成立?若存在,求M;若不存在,说明理由.
查看答案
manfen5.com 满分网如图,平行四边形ABCD中,CD=1,∠BCD=60.,且BD⊥CD,正方形ADEF和平面ABCD成直二面角,G,H是DF,BE的中点.
(Ⅰ)求证:BD⊥平面CDE;
(Ⅱ)求证:GH∥平面CDE;
(Ⅲ)求三棱锥D-CEF的体积.
查看答案
先后2次抛掷一枚骰子,将得到的点数分别记为a,b.
(Ⅰ)设函数f(x)=|x-a|,函数g(x)=x-b,令F(x)=f(x)-g(x),求函数F(x)有且只有一个零点的概率;
(Ⅱ)将a,b,5的值分别作为三条线段的长,求这三条线段能围成等腰三角形的概率.
查看答案
如图,在四边形ABCD中,AD=8,CD=6,AB=13,∠ADC=90°且manfen5.com 满分网
(I)求sin∠BAD的值;
(II)设△ABD的面积为S△ABD,△BCD的面积为S△BCD,求manfen5.com 满分网的值.

manfen5.com 满分网 查看答案
如图的矩形,长为5,宽为3,在矩形内随机地撒300颗黄豆,数得落在阴影部分的黄豆数为120颗,则我们可以估计出阴影部分的面积为   
manfen5.com 满分网 查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.