满分5 > 高中数学试题 >

如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O...

manfen5.com 满分网如图,在三棱锥P-ABC中,AB=AC,D为BC的中点,PO⊥平面ABC,垂足O落在线段AD上,已知BC=8,PO=4,AO=3,OD=2
(Ⅰ)证明:AP⊥BC;
(Ⅱ)在线段AP上是否存在点M,使得二面角A-MC-β为直二面角?若存在,求出AM的长;若不存在,请说明理由.
以O为原点,以AD方向为Y轴正方向,以射线OP的方向为Z轴正方向,建立空间坐标系,我们易求出几何体中各个顶点的坐标. (I)我们易求出,的坐标,要证明AP⊥BC,即证明•=0; (II)要求满足条件使得二面角A-MC-β为直二面角的点M,即求平面BMC和平面APC的法向量互相垂直,由此求出M点的坐标,然后根据空间两点之间的距离公式,即可求出AM的长. 【解析】 以O为原点,以AD方向为Y轴正方向,以射线OP的方向为Z轴正方向,建立空间坐标系, 则O(0,0,0),A(0,-3,0),B(4,2,0),C(-4,2,0),P(0,0,4) (I)则=(0,3,4),=(-8,0,0) 由此可得•=0 ∴⊥ 即AP⊥BC (II)设=λ,λ≠1,则=λ(0,-3,-4) =+=+λ=(-4,-2,4)+λ(0,-3,-4) =(-4,5,0),=(-8,0,0) 设平面BMC的法向量=(a,b,c) 则 令b=1,则=(0,1,) 平面APC的法向量=(x,y,z) 则 即 令x=5 则=(5,4,-3) 由=0 得4-3=0 解得λ= 故AM=3 综上所述,存在点M符合题意,此时AM=3
复制答案
考点分析:
相关试题推荐
杭州市教育局开展支教活动,有五位高级教师被随机分配到A,B,C三个所不同的学校,且每所学校至少分配一名教师.
(1)求甲、乙两位教师同时分配到一个中学的概率;
(2)设随机变量X为这五位教师分到A中学的人数,求X的分布列和期望.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且acosC,bcosB,ccosA成等差数列,
(Ⅰ)求B的值;
(Ⅱ)求2sin2A+cos(A-C)的范围.
查看答案
已知O为△ABC的外心,|manfen5.com 满分网|=16,|manfen5.com 满分网|=10manfen5.com 满分网,若manfen5.com 满分网,且32x+25y=25,则|manfen5.com 满分网|=    查看答案
已知椭圆C的两个焦点分别为F1(-1,0),F2(1,0),抛物线E以坐标原点为顶点,F2为焦点.直线l过点F2,且交y轴于D点,交抛物线E于A,B两点若F1B⊥F2B,则|AF2|-|BF2|=    查看答案
已知直线manfen5.com 满分网与函数f(x)=sinx和函数g(x)=cosx的图象分别交于M,N两点,若MN=manfen5.com 满分网,则线段MN的中点纵坐标为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.