已知椭圆
的离心率为
,且过点
,记椭圆的左顶点为A.
(1)求椭圆的方程;
(2)设垂直于y轴的直线l交椭圆于B,C两点,试求△ABC面积的最大值;
(3)过点A作两条斜率分别为k
1,k
2的直线交椭圆于D,E两点,且k
1k
2=2,求证:直线DE恒过一个定点.
考点分析:
相关试题推荐
如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求M在AB的延长线上,N在AD的延长线上,且对角线MN过C点.已知AB=3米,AD=2米.
(I)设AN=x(单位:米),要使花坛AMPN的面积大于32平方米,求x的取值范围;
(Ⅱ)若x∈[3,4)(单位:米),则当AM,AN的长度分别是多少时,花坛AMPN的面积最大?并求出最大面积.
查看答案
如图,在四棱锥P-ABCD中,底面ABCD是正方形,侧面PAD⊥底面ABCD,且PA⊥PD,E,F分别为PC,BD的中点.证明
(1)EF∥平面PAD;
(2)EF⊥平面PDC.
查看答案
在△ABC中,角A,B,C的对边分别为a,b,c,且A,B,C成等差数列.
(1)若
,且
,求a+c的值;
(2)若存在实数m,使得2sinA-sinC=m成立,求实数m的取值范围.
查看答案
如图,已知正方形ABCD的边长为1,过正方形中心O的直线MN分别交正方形的边AB,CD于M,N,则当
最小时,CN=
.
查看答案
已知椭圆
的左右焦点分别为F
1,F
2,离心率为e,若椭圆上存在点P,使得
,则该离心率e的取值范围是
.
查看答案