满分5 > 高中数学试题 >

已知,且,则tanφ=( ) A. B. C.- D.

已知manfen5.com 满分网,且manfen5.com 满分网,则tanφ=( )
A.manfen5.com 满分网
B.manfen5.com 满分网
C.-manfen5.com 满分网
D.manfen5.com 满分网
先由诱导公式化简cos(φ)=-sinφ=确定sinφ的值,再根据φ的范围确定cosφ的值,最终得到答案. 【解析】 由,得, 又,∴∴tanφ=- 故选C.
复制答案
考点分析:
相关试题推荐
已知集合manfen5.com 满分网,N={x|y=log2(2-x)},则∁R(M∩N)=( )
A.[1,2)
B.(-∞,1)∪[2,+∞)
C.[0,1]
D.(-∞,0)∪[2,+∞)
查看答案
已知manfen5.com 满分网,g(x)=2lnx+bx,且直线y=2x-2与曲线y=g(x)相切.
(1)若对[1,+∞)内的一切实数x,不等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=1时,求最大的正整数k,使得对[e,3](e=2.71828…是自然对数的底数)内的任意k个实数x1,x2,…,xk都有f(x1)+f(x2)+…+f(xk-1)≤16g(xk)成立;
(3)求证:manfen5.com 满分网
查看答案
manfen5.com 满分网已知两点F1(-1,0)及F2(1,0),点P在以F1、F2为焦点的椭圆C上,且|PF1|、|F1F2|、|PF2|构成等差数列.
(1)求椭圆C的方程;
(2)如图,动直线l:y=kx+m与椭圆C有且仅有一个公共点,点M,N是直线l上的两点,且F1M⊥l,F2N⊥l.求四边形F1MNF2面积S的最大值.
查看答案
已知数列{an}满足:a1=1,a2=a(a≠0),manfen5.com 满分网(其中p为非零常数,n∈N*).
(1)判断数列manfen5.com 满分网是不是等比数列?
(2)求an
(3)当a=1时,令manfen5.com 满分网,Sn为数列{bn}的前n项和,求Sn
查看答案
如图1,⊙O的直径AB=4,点C、D为⊙O上两点,且∠CAB=45°,∠DAB=60°,F为manfen5.com 满分网的中点.沿直径AB折起,使两个半圆所在平面互相垂直(如图2).
(1)求证:OF∥平面ACD;
(2)求二面角C-AD-B的余弦值;
(3)在manfen5.com 满分网上是否存在点G,使得FG∥平面ACD?若存在,试指出点G的位置,并求直线AG与平面ACD所成角的正弦值;若不存在,请说明理由.
manfen5.com 满分网
查看答案
试题属性

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.