(1)p=q=1时,an=2n+n,利用分组求和的方法可求得Sn=(2+22+23+…+2n)+(1+2+3+…+n);
(2)p=1时,an=2n+qn,若数列{an}为等比数列,利用则=a2•a4可求得q,从而可得到答案.
【解析】
(1)p=q=1时,an=2n+n-----------------------------------(2分)
∴Sn=(2+22+23+…+2n)+(1+2+3+…+n)=+=2n+1-2+,----(7分)
(2)p=1时,an=2n+qn,---------------------------------------------(8分)
得a1=2+q,a2=4+2q,a3=8+3q,a4=16+4q-------------------------------------(9分)
若数列{an}为等比数列,则=a2•a4,-----------------------(11分)
即(8+3q)2=(4+2q)(16+4q),得q=0,--------------------------------------(13分)
此时an=2n,得{an}是以2为首项,2为公比的等比数列.
∴q=0---------------------------------------------(14分)