满分5 > 高中数学试题 >

在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc....

在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
(1)先根据余弦定理求出角A的余弦值,然后可得到角A的值. (2)先根据正弦定理用角B表示出边b,c,然后代入整理成y=Asin(wx+ρ)+b的形式,再由正弦函数的性质可求最大值. 【解析】 (Ⅰ)在△ABC中,由b2+c2-a2=bc及余弦定理, 得cosA=, 而0<A<π,则A=; (Ⅱ)由a=,A=及正弦定理, 得, 而C=-B,则 b=2sinB,c=2sin(-B)(0<B<). 于是y=a+b+c=+2sinB+2sin(-B)=2sin(B+)+, 由0<B<,得<B+<, 当B+=即B=时,.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
manfen5.com 满分网已知函数manfen5.com 满分网的图象的一部分如图所示.
(I)求函数f(x)的解析式;
(II)求函数y=f(x)+f(x+2)的最大值与最小值.
查看答案
已知△ABC中,a、b、c分别是三个内角A、B、C的对边,关于x的不等式x2cosC+4xsinC+6<0的解集是空集
(Ⅰ)求角C的最大值;
(Ⅱ)若manfen5.com 满分网,△ABC的面积manfen5.com 满分网,求当角C取最大值时a+b的值.
查看答案
在△ABC中,角A、B、C所对的边分别为a,b,c,已知cos2C=manfen5.com 满分网
(I)求sinC的值;
(Ⅱ)当a=2,2sinA=sinC时,求b及c的长.
查看答案
设△ABC的三个内角A,B,C所对的边分别为a,b,c.已知manfen5.com 满分网
(Ⅰ)求角A的大小;
(Ⅱ)若a=2,求b+c的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.