满分5 > 高中数学试题 >

设向量 (1)若与垂直,求tan(α+β)的值; (2)求的最大值; (3)若t...

设向量manfen5.com 满分网
(1)若manfen5.com 满分网manfen5.com 满分网垂直,求tan(α+β)的值;
(2)求manfen5.com 满分网的最大值;
(3)若tanαtanβ=16,求证:manfen5.com 满分网manfen5.com 满分网
(1)先根据向量的线性运算求出,再由与垂直等价于与的数量积等于0可求出α+β的正余弦之间的关系,最后可求正切值. (2)先根据线性运算求出,然后根据向量的求模运算得到||的关系,最后根据正弦函数的性质可确定答案. (3)将tanαtanβ=16化成弦的关系整理即可得到(4cosα)•(4cosβ)=sinαsinβ,正是∥的充要条件,从而得证. 【解析】 (1)∵=(sinβ-2cosβ,4cosβ+8sinβ),与垂直, ∴4cosα(sinβ-2cosβ)+sinα(4cosβ+8sinβ)=0, 即sinαcosβ+cosαsinβ=2(cosαcosβ-sinαsinβ), ∴sin(α+β)=2cos(α+β),∴tan(α+β)=2. (2)∵=(sinβ+cosβ,4cosβ-4sinβ), ∴||= =, ∴当sin2β=-1时,||取最大值,且最大值为. (3)∵tanαtanβ=16,∴,即sinαsinβ=16cosαcosβ, ∴(4cosα)•(4cosβ)=sinαsinβ, 即=(4cosα,sinα)与=(sinβ,4cosβ)共线, ∴∥.
复制答案
考点分析:
相关试题推荐
设向量manfen5.com 满分网=(manfen5.com 满分网sin2x,sinx+cosx),manfen5.com 满分网=(1,sinx-cosx),其中x∈R,函数f(x)=manfen5.com 满分网.(1)求f(x) 的最小正周期;
(2)若f(θ)=manfen5.com 满分网,其中0<θ<manfen5.com 满分网,求cos(θ+manfen5.com 满分网)的值.
查看答案
三角形的三内角A,B,C所对边的长分别为a,b,c,设向量manfen5.com 满分网=(c-a,b-a),manfen5.com 满分网=(a+b,c),若manfen5.com 满分网
(1)求角B的大小.
(2)求sinA+sinC的取值范围.
查看答案
在△ABC中,a,b,c分别为角A、B、C的对边,且满足b2+c2-a2=bc.
(Ⅰ)求角A的值;
(Ⅱ)若a=manfen5.com 满分网,设角B的大小为x,△ABC的周长为y,求y=f(x)的最大值.
查看答案
已知函数f(x)=2sin(π-x)cosx.
(Ⅰ)求f(x)的最小正周期;
(Ⅱ)求f(x)在区间manfen5.com 满分网上的最大值和最小值.
查看答案
manfen5.com 满分网已知函数manfen5.com 满分网的图象的一部分如图所示.
(I)求函数f(x)的解析式;
(II)求函数y=f(x)+f(x+2)的最大值与最小值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.