满分5 > 高中数学试题 >

设椭圆C:的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足...

设椭圆C:manfen5.com 满分网的左、右焦点分别为F1、F2,上顶点为A,在x轴负半轴上有一点B,满足manfen5.com 满分网,且AB⊥AF2
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若过A、B、F2三点的圆恰好与直线manfen5.com 满分网相切,求椭圆C的方程;                      
(Ⅲ)在(Ⅱ)的条件下,过右焦点F2作斜率为k的直线l与椭圆C交于M、N两点,若点P(m,0)使得以PM,PN为邻边的平行四边形是菱形,求的取值范围.

manfen5.com 满分网
(Ⅰ)由题意知F1(-c,0),F2(c,0),A(0,b),由知F1为BF2的中点,由AB⊥AF2,知Rt△ABF2中,BF22=AB2+AF22,由此能求出椭圆的离心率. (Ⅱ)由,知,,,Rt△ABF2的外接圆圆心为(-,0),半径r=a,所以,由此能求出椭圆方程. (Ⅲ)由F2(1,0),l:y=k(x-1),设M(x1,y1),N(x2,y2),由,得(3+4k2)x2-8k2x+4k2-12=0,由此能求出m的取值范围. 【解析】 (Ⅰ)由题意知F1(-c,0),F2(c,0),A(0,b) ∵知F1为BF2的中点, AB⊥AF2 ∴Rt△ABF2中,BF22=AB2+AF22, 又a2=b2+c2 ∴a=2c 故椭圆的离心率…(3分) (Ⅱ)由(Ⅰ)知得, 于是,, Rt△ABF2的外接圆圆心为(-,0),半径r=a, 所以,解得a=2, ∴c=1,, 所求椭圆方程为…(6分) (Ⅲ)由(Ⅱ)知F2(1,0),l:y=k(x-1), 设M(x1,y1),N(x2,y2), 由,代入得(3+4k2)x2-8k2x+4k2-12=0 则, y1+y2=k(x1+x2-2)…(8分) 由于菱形对角线垂直, 则 故x1+x2-2m+k(y1+y2)=0 即x1+x2-2m+k2(x1+x2-2)=0, …(10分) 由已知条件知k≠0, ∴ ∴故m的取值范围是.…(12分)
复制答案
考点分析:
相关试题推荐
已知函数f(x)=ax-1-lnx,a∈R.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若函数f(x)在x=1处取得极值,对∀x∈(0,+∞),f(x)≥bx-2恒成立,求实数b的取值范围.
查看答案
如图,在底面为直角梯形的四棱锥P-ABCD中,AD∥BC,∠ABC=90°,PD⊥面ABCD.AD=1,manfen5.com 满分网,BC=4.
(1)求证:BD⊥PC;
(2)求直线AB与平面PDC所成角;
(3)设点E在棱PC、上,manfen5.com 满分网,若DE∥面PAB,求λ的值.

manfen5.com 满分网 查看答案
PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可入肺颗粒物.PM2.5日均值在35微克/立方米以下空气质量为一级;在35微克/立方米~75微克/立方米之间空气质量为二级;在75微克/立方米以上空气质量为超标.
石景山古城地区2013年2月6日至15日每天的PM2.5监测数据如茎叶图所示.
(Ⅰ)小陈在此期间的某天曾经来此地旅游,求当天PM2.5日均监测数据未超标的概率;
(Ⅱ)小王在此期间也有两天经过此地,这两天此地PM2.5监测数据均未超标.请计算出这两天空气质量恰好有一天为一级的概率;
(Ⅲ)从所给10天的数据中任意抽取三天数据,记ξ表示抽到PM2.5监测数据超标的天数,求ξ的分布列及期望.

manfen5.com 满分网 查看答案
已知函数manfen5.com 满分网
(Ⅰ)求函数f(x)的单调递增区间;
(Ⅱ)在△ABC中,内角A、B、C的对边分别为a、b、c.已知manfen5.com 满分网,a=2,manfen5.com 满分网,求△ABC的面积.
查看答案
对于各数互不相等的整数数组(i1,i2,i3,…,in)(n是不小于3的正整数),若对任意的p,q∈{1,2,3,…,n},当p<q时有ip>iq,则称ip,iq是该数组的一个“逆序”.一个数组中所有“逆序”的个数称为该数组的“逆序数”,如数组(2,3,1)的逆序数等于2.则数组(5,2,4,3,1)的逆序数等于    ;若数组(i1,i2,i3,…,in)的逆序数为n,则数组(in,in-1,…,i1)的逆序数为    查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.