满分5 > 高中数学试题 >

选修4-1:几何证明选讲 如图,AB为⊙O直径,直线CD与⊙O相切与E,AD垂直...

manfen5.com 满分网选修4-1:几何证明选讲
如图,AB为⊙O直径,直线CD与⊙O相切与E,AD垂直于CD于D,BC垂直于CD于C,EF垂直于F,连接AE,BE.证明:
(I)∠FEB=∠CEB;
(II)EF2=AD•BC.
(1)直线CD与⊙O相切于E,利用弦切角定理可得∠CEB=∠EAB.由AB为⊙O的直径,可得∠AEB=90°.又EF⊥AB,利用互余角的关系可得∠FEB=∠EAB,从而得证. (2)利用(1)的结论及∠ECB=90°=∠EFB和EB公用可得△CEB≌△FEB,于是CB=FB.同理可得△ADE≌△AFE,AD=AF.在Rt△AEB中,由EF⊥AB,利用射影定理可得EF2=AF•FB.等量代换即可. 证明:(1)∵直线CD与⊙O相切于E,∴∠CEB=∠EAB. ∵AB为⊙O的直径,∴∠AEB=90°. ∴∠EAB+∠EBA=90°. ∵EF⊥AB,∴∠FEB+∠EBF=90°. ∴∠FEB=∠EAB. ∴∠CEB=∠EAB. (2)∵BC⊥CD,∴∠ECB=90°=∠EFB, 又∠CEB=∠FEB,EB公用. ∴△CEB≌△FEB. ∴CB=FB. 同理可得△ADE≌△AFE,∴AD=AF. 在Rt△AEB中,∵EF⊥AB,∴EF2=AF•FB. ∴EF2=AD•CB.
复制答案
考点分析:
相关试题推荐
已知函数f(x)=(1+x)e-2x,g(x)=ax+manfen5.com 满分网+1+2xcosx,当x∈[0,1]时,
(I)求证:manfen5.com 满分网
(II)若f(x)≥g(x)恒成立,求实数a的取值范围.
查看答案
manfen5.com 满分网如图,抛物线C1:x2=4y,C2:x2=-2py(p>0),点M(x,y)在抛物线C2上,过M作C1的切线,切点为A,B(M为原点O时,A,B重合于O),当x=1-manfen5.com 满分网时,切线MA的斜率为-manfen5.com 满分网
(I)求P的值;
(II)当M在C2上运动时,求线段AB中点N的轨迹方程(A,B重合于O时,中点为O).
查看答案
现有10道题,其中6道甲类题,4道乙类题,张同学从中任取3道题解答.
(I)求张同学至少取到1道乙类题的概率;
(II)已知所取的3道题中有2道甲类题,1道乙类题.设张同学答对甲类题的概率都是manfen5.com 满分网,答对每道乙类题的概率都是manfen5.com 满分网,且各题答对与否相互独立.用X表示张同学答对题的个数,求X的分布列和数学期望.
查看答案
如图,AB是圆的直径,PA垂直圆所在的平面,C是圆上的点.
(I)求证:平面PAC⊥平面PBC;
(II)若AB=2,AC=1,PA=1,求证:二面角C-PB-A的余弦值.

manfen5.com 满分网 查看答案
设向量manfen5.com 满分网manfen5.com 满分网manfen5.com 满分网
(1)若manfen5.com 满分网,求x的值;
(2)设函数manfen5.com 满分网,求f(x)的最大值.
查看答案
试题属性
  • 题型:解答题
  • 难度:中等

Copyright @ 2008-2019 满分5 学习网 ManFen5.COM. All Rights Reserved.