由题意可知曲线为单位圆在x轴上方部分(含与x轴的交点),由此可得到过C点的直线与曲线相交时k的范围,设出直线方程,由点到直线的距离公式求出原点到直线的距离,由勾股定理求出直线被圆所截半弦长,写出面积后利用配方法转化为求二次函数的最值.
【解析】
由y=,得x2+y2=1(y≥0).
所以曲线y=表示单位圆在x轴上方的部分(含与x轴的交点),
设直线l的斜率为k,要保证直线l与曲线有两个交点,且直线不与x轴重合,
则-1<k<0,直线l的方程为y-0=,即.
则原点O到l的距离d=,l被半圆截得的半弦长为.
则=
==.
令,则,当,即时,S△ABO有最大值为.
此时由,解得k=-.
故答案为B.